
Real-Time Normal Map DXT Compression

J.M.P. van Waveren

Id Software, Inc.

Ignacio Castaño

NVIDIA Corp.

February 7th 2008

© 2008, Id Software, Inc.

Abstract

Using today's graphics hardware, normal maps can be stored in several

compressed formats, that are decompressed on the fly in hardware during

rendering. Several object-space and tangent-space normal map compression

techniques using existing texture compression formats are evaluated. While

decompression from these formats happens in real-time in hardware during

rendering, compression to these formats may take a considerable amount of

time using existing compressors. Two highly optimized tangent-space normal

map compression algorithms are presented that can be used to achieve real-

time performance on both the CPU and GPU.

1. Introduction

Bump mapping uses a texture to perturb the surface normal to give objects a more geometrically

complex appearance without increasing the number of geometric primitives. Bump mapping, as

originally described by Blinn [1], uses the gradient of a bump map heightfield to perturb the

interpolated surface normal in the direction of the surface derivatives (tangent vectors), before

calculating the illumination of the surface. By changing the surface normal, the surface is lit as if

it has more detail, and as a result is also perceived to have more detail than the geometric

primitives used to describe the surface.

Normal mapping is an application of bump mapping, and was introduced by Peercy et al. [2].

While bump mapping perturbs the existing surface normals of an object, normal mapping

replaces the normals entirely. A normal map is a texture that stores normals. These normals are

usually stored as unit-length vectors with three components: X, Y and Z. Normal mapping has

significant performance benefits over bump mapping, in that far fewer operations are required to

calculate the surface lighting.

Normal mapping is usually found in two varieties: object-space and tangent-space normal

mapping. They differ in coordinate systems in which the normals are measured and stored.

Object-space normal maps store normals relative to the position and orientation of a whole

object. Tangent-space normals are stored relative to the interpolated tangent-space of the triangle

vertices. While object-space normals can be anywhere on the unit-sphere, tangent-space normals

are only on the unit-hemisphere at the front of the surface, because the normals always point out

of the surface.

Example of an object-space normal map (left),

and the same normal map in tangent-space (right).

A normal does not necessarily have to be stored as a vector with the components X, Y and Z.

However, rendering from other representations usually comes at a performance cost. A normal

could, for instance, be stored as an angle pair (pitch, yaw). However, this representation has the

problem that interpolation or filtering does not work properly, because there are orientations in

which there may not exist a simple change to the angles to represent a local rotation. Before

interpolating, filtering, or calculating the surface illumination for that matter, the angle pair has

to be converted to a different representation like a vector, which requires expensive

trigonometric functions.

Although a normal map can be stored as a floating-point texture, a normal map is typically stored

as a signed or unsigned integer texture, because the components of normal vectors take values

within a well defined range (usually [-1, +1]), and there is a benefit to having the same precision

across the whole range without wasting any bits for a floating-point exponent. For instance, to

store a normal map as an unsigned integer texture with 8 bits per component, the X, Y and Z

components are rescaled from real values in the range [-1, +1] to integer values in the range [0,

255]. As such, the real-valued vector [0, 0, 1] is converted to the integer vector [128, 128, 255],

which, when interpreted as a point in RGB space, is the purple/blue color that is predominant in

tangent-space normal maps. To render a normal map stored as an unsigned integer texture, the

vector components are first mapped from an integer value to the floating-point range [0, +1] in

hardware. For instance, in the case of a texture with 8 bits per component, the integer range [0,

255] is mapped to the floating-point range [0, +1] by division with 255. Then the components are

typically mapped from the [0, +1] range to the [-1, +1] range during rendering in a fragment

program by subtracting 1 after multiplication with 2. When a signed integer texture is used, the

mapping from an integer value to the floating-point range [-1, +1] is performed directly in

hardware.

Whether using a signed or unsigned integer texture, a fundamental problem is that it is not

possible to derive a linear mapping from binary integer numbers to the floating-point range [-1,

+1], such that the values -1, 0, and +1 are represented exactly. The mapping in hardware of

signed integer textures, used in earlier NVIDIA implementations, does not exactly represent +1.

For an n-bit unsigned integer component, the integer 0 maps to -1, the integer 2
n-1

 maps to 0, and

Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/04_face.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/16_face.png

the maximum integer value 2
n
-1 maps to 1 - 2

1-n
. In other words, the values -1 and 0 are

represented exactly, but the value +1 is not. The mapping used for DirectX 10 class hardware is

non-linear. For an n-bit signed integer component, the integer -2
n-1

 maps to -1, the integer -2
n-1

+1

also maps to -1, the integer 0 maps to 0, and the integer 2
n-1

-1 maps to +1. In other words, the

values -1, 0 and +1 are all represented exactly, but the value -1 is represented twice.

Signed textures are not supported on older hardware. Furthermore, the mapping from binary

integers to the range [-1, +1] may be hardware specific. Some implementations may choose to

not represent +1 exactly, whereas the conventional OpenGL mapping specifies that -1 and +1

can be represented exactly, but 0 can not. Other implementations may choose a non-linear

mapping, or allow values outside the range [-1, +1], such that all three values -1, 0 and +1 can be

represented exactly. To cover the widest range of hardware without any hardware specific

dependencies, all normal maps used here are assumed to be stored as unsigned integer textures.

The mapping from the range [0, +1] to [-1, +1] is performed in a fragment program by

subtracting 1 after multiplication with 2. This may result in an additional fragment program

instruction, which can be trivially removed when a signed texture is used. The mapping used

here is the same as the conventional OpenGL mapping which results in an exact representation

of the values -1 and +1, but not 0.

An integer normal map texture can typically be stored with 16 (5:6:5), 24 (8:8:8), 48 (16:16:16)

or 96 (32:32:32) bits per normal vector. Most of today's normal maps, however, are stored with

no more than 24 (8:8:8) bits per normal vector. It is important to realize there are relatively few

8:8:8 bit vectors that are actually close to unit-length. For instance, the integer vector [0, 0, 64],

which is dark blue in RGB space, does not represent a unit-length normal vector (the length is

0.5 as opposed to 1.0). The following figure shows the percentage of representable 8:8:8 bit

vectors that are less than a certain percentage off from being unit-length.

For instance, if it is not considered acceptable for normal vectors to be more than 5% from unit-

length, then only about 15% of all representable 8:8:8 bit vectors can be used to represent normal

vectors. Going to fewer bits of precision, like 5:6:5 bits, the number of representable vectors that

are close to unit-length decreases quickly.

To significantly increase the number of vectors that can be used, each normal vector can be

stored as a direction that is not necessarily unit-length. This direction then needs to be

normalized in a fragment program. However, there is still some waste because only 83% of the

all 8:8:8 bit vectors represent unique directions. For instance, the integer vectors [0, 0, 32], [0, 0,

64] and [0, 0, 96] all specify the exact same direction (they are multiples of each other).

Furthermore, the unique normalized directions are not uniformly distributed over the unit-sphere.

There are more representations for directions close to the four diagonals of the bounding box of

the [-1, +1] x [-1, +1] x [-1, +1] vector space, than there are representations for directions close

to the coordinate axes. For instance, there are three times more directions represented within a 15

degrees radius around the vector [1, 1, 1], than there are directions represented within a 15

degrees radius around the vector [0, 0, 1]. The figure below shows the distribution of all

representable 8:8:8 bit vectors projected onto the unit-sphere. The areas with a low density of

vectors are green, and the areas with a high density are red.

distribution of 8:8:8 bit vectors

projected on the unit-sphere

On today's graphics hardware, normal maps can also be stored in several compressed formats,

that are decompressed in real-time during rendering. Compressed normal maps do not only

require significantly less memory on the graphics card, but also generally render faster than

uncompressed normal maps, due to reduced bandwidth requirements. Various different ways to

exploit existing texture compression formats for normal map compression, have been suggested

in literature [7, 8, 9]. Several of these normal map compression techniques, and extensions to

them, are evaluated in section 2 and 3.

While decompression from these formats is done real-time in hardware, compression to these

formats may take a considerable amount of time. Existing compressors are designed for high-

quality off-line compression, not real-time compression [20, 21, 22]. However, real-time

compression is quite useful for transcoding normal maps from a different format, compression of

dynamically generated normal maps, and for compressed normal map render targets. In sections

4 and 5 two highly optimized tangent-space normal map compression algorithms are presented,

that can be used to achieve real-time performance on both the CPU and GPU.

2. Object-Space Normal Maps

Object-space normal maps store normals relative to the position and orientation of a whole

object. A normal in object-space can be anywhere on the full unit-sphere, and is typically stored

as a vector with three components: X, Y and Z. Object-space normal maps can be stored using

regular color texture compression techniques, but these techniques may not be as effective,

because normal map textures do not have the same properties as color textures.

2.1 Object-Space DXT1

DXT1 [3, 4], also known as BC1 in DirectX 10 [5], is a lossy compression format for color

textures, with a fixed compression ratio of 8:1. The DXT1 format is designed for real-time

decompression in hardware on the graphics card during rendering. DXT1 compression is a form

of Block Truncation Coding (BTC) [6] where an image is divided into non-overlapping blocks,

and the pixels in each block are quantized to a limited number of values. The color values of

pixels in a 4x4 pixel block are approximated with equidistant points on a line through RGB color

space. This line is defined by two end-points, and for each pixel in the 4x4 block a 2-bit index is

stored to one of the equidistant points on the line. The end-points of the line through color space

are quantized to 16-bit 5:6:5 RGB format and either one or two intermediate points are generated

through interpolation. The DXT1 format allows a 1-bit alpha channel to be encoded, by

switching to a different mode based on the order of the end points, where only one intermediate

point is generated and one additional color is specified, which is black and fully transparent.

Although the DXT1 format is designed for color textures this format can also be used to store

normal maps. To compress a normal map to DXT1 format, the X, Y and Z components of the

normal vectors are mapped to the RGB channels of a color texture. In particular for DXT1

compression each normal vector component is mapped from the range [-1, +1] to the integer

range [0, 255]. The DXT1 format is decompressed in hardware during rasterization, and the

integer range [0, 255] is mapped to the floating point range [0, 1] in hardware. In a fragment

program the range [0, 1] will have to be mapped back to the range [-1, +1] to perform lighting

calculations with the normal vectors. The following fragment program shows how this

conversion can be implemented using a single instruction.

input.x = normal.x [0, 1]

input.y = normal.y [0, 1]

input.z = normal.z [0, 1]

input.w = 0

MAD normal, input, 2.0, -1.0

Compressing a normal map to DXT1 format generally results in rather poor quality. There are

noticeable blocking and banding artifacts. Only four distinct normal vectors can be encoded per

4x4 block, which is typically not enough to accurately represent all original normal vectors in a

block. Because the normals in each block are approximated with equidistance points on a line, it

is also impossible to encode four distinct normal vectors per 4x4 block that are all unit-length.

Only two normal vectors per 4x4 block can be close to unit-length at a time, and usually a

compressor selects a line through vector space which minimizes some error metric, such that,

none of the vectors are actually close to unit-length.

The DXT1 compressed normal map on the right shows noticeable

blocking artifacts compared to the original normal map on the left.

To improve the quality, each normal vector can be encoded as a direction that is not necessarily

unit-length. This direction then has to be re-normalized in a fragment program. The following

fragment program shows how a normal vector can be re-normalized.

input.x = normal.x [0, 1]

input.y = normal.y [0, 1]

input.z = normal.z [0, 1]

input.w = 0

MAD normal, input, 2.0, -1.0

DP3 scale, normal, normal

RSQ scale.x, scale.x

MUL normal, normal, scale.x

Encoding directions gives the compressor more freedom, because the compressor does not have

to worry about the magnitude of the vectors, and a much larger percentage of all representable

vectors can be used for the end points of the line through normal space. However, this increased

freedom makes compression a much harder problem.

The DXT1 compressed normal map with re-normalization on

the right compared to the original normal map on the left.

The above images show that, although the quality is a little bit better, the quality is generally still

rather poor. Whether re-normalizing in a fragment program or not, the quality of DXT1

compressed object-space normal maps is generally not considered to be acceptable.

2.2 Object-Space DXT5

The DXT5 format [3, 4], also known as BC3 in DirectX 10 [5], stores three color channels the

same way DXT1 does, but without 1-bit alpha channel. Instead of the 1-bit alpha channel, the

DXT5 format stores a separate alpha channel which is compressed similarly to the DXT1 color

channels. The alpha values in a 4x4 block are approximated with equidistant points on a line

through alpha space. The end-points of the line through alpha space are stored as 8-bit values,

and based on the order of the end-points either 4 or 6 intermediate points are generated through

interpolation. For the case with 4 intermediate points, two additional points are generated, one

for fully opaque and one for fully transparent. For each pixel in a 4x4 block a 3-bit index is

stored to one of the equidistant points on the line through alpha space, or one of the two

additional points for fully opaque or fully transparent. The same number of bits are used to

encode the alpha channel as the three DXT1 color channels. As such, the alpha channel is stored

with higher precision than each of the color channels, because the alpha space is one-

dimensional, as opposed to the three-dimensional color space. Furthermore, there are a total of 8

samples to represent the alpha values in a 4x4 block, as opposed to 4 samples to represent the

color values. Because of the additional alpha channel, the DXT5 format consumes twice the

amount of memory of the DXT1 format.

The DXT5 format is designed for color textures with a smooth alpha channel. However, this

format can also be used to store object-space normal maps. In particular, better quality normal

map compression can be achieved by using the DXT5 format and moving one of the components

to the alpha channel. By moving one of the components to the alpha channel this component is

stored with more precision. Furthermore, by encoding only two components in the DXT1 block

of the DXT5 format, the accuracy with which these components are stored typically improves as

well. For object-space normal maps there is no clear benefit to moving any particular component

to the alpha channel, because the normal vectors may point in any direction, and all values can

occur with similar frequencies for all components. When an object-space normal map does have

most vectors in a specific direction, then there is clearly a benefit to mapping the axis most

orthogonal to that direction to the alpha channel. However, in general it is not practical to change

the encoding on a per normal map basis, because a different fragment program is required for

each encoding. The following fragment program assumes the Z component is moved to the alpha

channel. The fragment program shows how the components are mapped from the range [0, 1] to

the range [-1, +1], while the Z component is also moved back in place from the alpha channel.

input.x = normal.x [0, 1]

input.y = normal.y [0, 1]

input.z = 0

input.w = normal.z [0, 1]

MAD normal, input.xywz, 2.0, -1.0

Just like DXT1 without re-normalization, this format results in minimal overhead in a fragment

programs. The quality is significantly better than DXT1 compression of object-space normal

maps. However, there are still noticeable blocking and banding artifacts.

The DXT5 compressed normal map on the right

compared to the original normal map on the left.

Using the third channel to store a scale factor like done for the YCoCg-DXT5 compression from

[24] does not help much to improve the quality. The dynamic range of the individual components

is typically too large, or the different components span different ranges that are far apart, while

there is only one scale factor for the combined dynamic range.

Just like DXT1 compression of object-space normal maps, the quality can be improved by

encoding a normal vector as a direction that is not necessarily unit-length. The following

fragment program shows how to perform the swizzle and re-normalization.

input.x = normal.x [0, 1]

input.y = normal.y [0, 1]

input.z = 0

input.w = normal.z [0, 1]

MAD normal, input.xywz, 2.0, -1.0

DP3 scale, normal, normal

RSQ scale.x, scale.x

MUL normal, normal, scale.x

Encoding directions gives the compressor a lot more freedom, because the compressor can

ignore the magnitude of the vectors, and a much larger percentage of all representable vectors

can be used for the end points of the lines through normal space. The normal vectors are encoded

using both the DXT1 block of the DXT5 format and the alpha channel, where the end points of

the alpha channel are stored without quantization. As such, the potential search space for the end

points of the lines can be very large, and high quality compression may take a considerable

amount of time.

The DXT5 compressed normal map with re-normalization on

the right compared to the original normal map on the left.

On current hardware, the DXT5 format with re-normalization in a fragment program results in

the best quality compression of object-space normal maps.

3. Tangent-Space Normal Maps

Tangent-space normal vectors are stored relative to the interpolated tangent-space of the triangle

vertices. Compression of tangent-space normal maps generally works better than compression of

object-space normal maps, because the dynamic range is lower. The vectors are only on the unit-

hemisphere at the front of the surface (the normal vectors never point into the object).

Furthermore, most normal vectors are close to the tip of the unit-hemisphere with Z close to 1.

Using tangent-space normal maps in itself can be considered a form of compression compared to

using object-space normal maps. A local transform is used to change the frequency domain of

the vector components which reduces their storage requirements. The transform does require

tangent vectors to be stored at the triangle vertices and, as such, comes at a cost. However, the

storage requirements for the tangent vectors is relatively very small compared to the storage

requirements for normal maps.

The compression of tangent-space normal maps can be improved by only storing the X and Y

components of unit-length normal vectors, and deriving the Z components. The normal vectors

are always pointing up out of the surface and the Z is always positive. Furthermore, the normal

vectors are unit-length and, as such, the Z can be derived as follows.

Z = sqrt(1 - X * X - Y * Y)

The problem with reconstructing Z from X and Y is that it is a non-linear operation, and breaks

down under bilinear filtering. The problem is most noticeable when interpolating between two

normals in the XY-plane. Ideally a normal map is scaled up using spherical interpolation of the

normal vectors, where the interpolated samples follow the shortest great arc on the unit sphere at

a constant speed. Bilinear filtering of a three component normal map, with re-normalization in

the fragment program, does not result in spherical interpolation at a constant speed, but at least

the interpolated samples follow the shortest great arc. With a two-component normal map,

however, where the Z is derived from the X and Y, the interpolated samples no longer

necessarily follow the shortest great arc on the unit sphere. For instance, interpolation between

the two vectors in the figure below is expected to follow the dotted line. Instead, however, the

interpolated samples are on the arc that goes up on the unit sphere.

Fortunately, real-world normal maps usually do not have many sharp normal boundaries with

adjacent vectors close to the XY-plane, and most of the normals point straight up. As such, there

are usually no noticeable artifacts when bilinearly or trilinearly filtering a two component normal

map before deriving the Z components.

Only storing the X and Y components is in essence an orthographic projection of the normal

vectors along the Z-axis onto the XY-plane. To reconstruct an original normal vector, a

projection back onto the unit-hemisphere is used, by deriving the Z component from the X and

Y. Instead of this orthographic projection, a stereographic projection can be used as well. For the

stereographic projection the X and Y components are divided by one plus Z as follows, where

(pX, pY) is the projection of the normal vector.

pX = X / (1 + Z)

pY = Y / (1 + Z)

The original normal vector is reconstructed by projecting the stereographically projected vector

back onto the unit-hemisphere as follows.

denom = 2 / (1 + pX * pX + pY * pY)

X = pX * denom

Y = pY * denom

Z = denom - 1

The advantage of using the stereographic projection is that the interpolated normal vectors

behave better under bilinear or trilinear filtering. The interpolated normal vectors are still not on

the shortest great arc, but they are closer, and have less of a tendency to go up on the unit-

hemisphere.

The stereographic projection also causes a more even distribution of the pX and pY components

with the angle on the unit-hemisphere. Although this may seem desirable, it is actually not,

because most tangent-space normal vectors are close to the tip of the unit-hemisphere. As such,

there is actually an advantage to using the orthographic projection which results in more

representations of vectors with Z close to 1. The compression techniques discussed below use the

orthographic projection because for most normal maps it results in better quality compression.

Instead of the orthographic and stereographic projections it is also an option to use a perspective

projection where the X and Y components are divided by the Z component. Normal maps that

are transformed this way are also known as partial derivative normal maps.

pX = X / Z

pY = Y / Z

The original normal vector is reconstructed by normalizing the vector (pX, pY, 1) which

projects the vector back onto the unit-hemisphere. This is particularly interesting because on

some graphics hardware normalizing a vector in a fragment program is very efficient.

denom = 1 / sqrt(1 + pX * pX + pY * pY)

X = pX * denom

Y = pY * denom

Z = denom

Obviously the projection fails if the Z component is zero. As a matter of fact only normal vectors

that are 45 degrees or less from pointing straight up (Z > sqrt(1/3)) can be reconstructed

correctly. The angle of this cone can be made wider or tighter by multiplying the Z component

with a value larger than one or less than one respectively before dividing the X and Y

components. In particular, the scale factor is the tangent of the desired angle where: tan(45°) = 1.

The reciprocal scale factor will have to be used for the reconstruction of the components.

Although the cone can be made infinitely small it is not possible to flatten the cone to a plane

such that all normals on the complete hemisphere can be properly reconstructed (tan(90°) =

infinity).

Despite these drawbacks this projection can result is surprisingly good quality compression of

normal maps if most or all normals are within a known cone centered about the up vector in

tangent space. The compression techniques discussed below, however, use the orthographic

projection because this allows for proper compression of normal maps with normals that cover

the complete hemisphere.

3.1 Tangent-Space DXT1

Using tangent-space normal maps only the X and Y components have to be stored in the DXT1

format, and the Z component can be derived in a fragment program. The following fragment

program shows how the Z can be derived from the X and Y.

input.x = normal.x [0, 1]

input.y = normal.y [0, 1]

input.z = 0

input.w = 0

MAD normal, input, 2.0, -1.0

DP4_SAT normal.z, normal, normal;

MAD normal, normal, { 1, 1, -1, 0 }, { 0, 0, 1, 0 };

RSQ temp, normal.z;

MUL normal.z, temp;

The following images show a XY_ DXT1 compressed normal map on the right, next to the

original normal map on the left. The DXT1 compressed normal map shows noticeable blocking

and banding artifacts.

XY_ DXT1 compressed normal map on the right

compared to the original normal map on the left.

Although at first it may seem this kind of compression should produce superior quality, better

quality compression can generally be achieved by storing all three components and re-

normalizing in a fragment program, just like for object-space normal maps. When only the X and

Y components are stored in the DXT1 format, the reconstructed normal vectors are automatically

normalized by deriving the Z component. When the X and Y components are distorted due to the

DXT1 compression, where all points are placed on a straight line through XY-space, the error in

the derived Z can be quite large.

The fragment program shown below for re-normalizing the DXT1 compressed normals, is the

same as the one used for DXT1 compressed object-space normal maps with re-normalization.

input.x = normal.x [0, 1]

input.y = normal.y [0, 1]

input.z = normal.z [0, 1]

input.w = 0

MAD normal, input, 2.0, -1.0

DP3 scale, normal, normal

RSQ scale.x, scale.x

MUL normal, normal, scale.x

The following images show a DXT1 compressed normal map with re-normalization on the right,

next to the original normal map on the left.

DXT1 compressed normal map with re-normalization on

the right compared to the original normal map on the left.

Either way, whether only storing two components in the DXT1 and deriving the Z, or storing all

three components in the DXT1 format with re-normalization in the fragment program, the quality

is rather poor.

3.2 Tangent-Space DXT5

Just like for object-space normal maps, all three components can be stored in the DXT5 format.

The best results are usually achieved when storing _YZX data. In other words the X component

is moved to the alpha channel. This technique is also known as RxGB compression, and was

employed in the computer game DOOM III. By moving the X component to the alpha channel,

the X and Y components are encoded separately. This improves the quality because the X and Y

components are most independent with the largest dynamic range. The Z is always positive and

typically close to 1 and, as such, storing the Z component with the Y component in the DXT1

part of the DXT5 format causes little distortion of the Y component. Storing all three

components results in minimal overhead in a fragment program as shown below.

input.x = 0

input.y = normal.y [0, 1]

input.z = normal.z [0, 1]

input.w = normal.x [0, 1]

MAD normal, input.wyzx, 2.0, -1.0

The following images show that, although the quality is better than DXT1 compression, there are

still noticeable banding artifacts.

DXT5 compressed normal map on the right compared

to the original normal map on the left.

Just like for object-space normal maps the quality can be improved by storing directions that are

not necessarily unit-length. The best quality is typically achieved by also moving the X

component to the DXT5 alpha channel. The following fragment program shows how the

directions are re-normalized after moving the X component back in place from the alpha

channel.

input.x = normal.x [0, 1]

input.y = normal.y [0, 1]

input.z = 0

input.w = normal.z [0, 1]

MAD normal, input.wyzx, 2.0, -1.0

DP3 scale, normal, normal

RSQ scale.x, scale.x

MUL normal, normal, scale.x

The following images show that encoding directions with re-normalization in a fragment

program reduces the banding artifacts, but they are still quite noticeable.

The DXT5 compressed normal map with re-normalization on

the right compared to the original normal map on the left.

For most tangent-space normal maps better quality compression can be achieved by only storing

the X and Y components in the DXT5 format and deriving the Z. This is also known as DXT5nm

compression, and is most popular in today's computer games. The following fragment program

shows how the Z is derived from the X and Y components.

input.x = 0

input.y = normal.y [0, 1]

input.z = 0

input.w = normal.x [0, 1]

MAD normal, input.wyzx, 2.0, -1.0

DP4_SAT normal.z, normal, normal;

MAD normal, normal, { 1, 1, -1, 0 }, { 0, 0, 1, 0 };

RSQ temp, normal.z;

MUL normal.z, temp;

The following images show that only storing the X and Y and deriving the Z, further reduces the

banding artifacts.

DXT5 compressed normal map storing only X and Y on the

right compared to the original normal map on the left.

When using XY_ DXT1, _YZX DXT5 or _Y_X DXT5 compression for tangent-space normal

maps, there is at least one spare channel that can be used to store a scale factor, which can be

used to counter quantization errors similar to what the YCoCg-DXT5 compressor from [24]

does. However, trying to upscale the components to counter quantization errors does not improve

the quality much (typically a PSNR improvement of less than 0.1 dB). The components can only

be scaled up when they have a low dynamic range. Although most normals point straight up, and

the magnitude of most X-Y vectors is relatively small, the dynamic range of the X-Y

components is actually still quite large. Even if all normals never deviate more than 45 degrees

from straight up, then each X or Y component may still map to the range [-cos(45°), +cos(45°

)], where cos(45°) ≅ 0.707. In other words even with a deviation of less than 45 degrees from

straight up, which is 50% of the angular range, each component may still cover more than 70%

of the maximum dynamic range. On one hand, this is a good thing, because for the components

of tangent-space normal vectors this means the largest part of the dynamic range covers the most

frequently occurring values. On the other hand this means it is hard to upscale the components

because of a relatively large dynamic range.

In the case of the _Y_X DXT5 compression of tangent-space normal maps there are two unused

channels, and one of these channels can be used to also store a bias to center the dynamic range.

This significantly increases the number of 4x4 blocks for which the values can be scaled up

(such that typically more than 75% of all 4x4 blocks use a scale factor of at least 2). However,

even using a bias to increase the number of scaled 4x4 blocks does not help much to improve the

quality. The real problem is that the four sample points of the DXT1 block are simply not enough

to accurately represent all the Y components of the normals in a 4x4 block. Introducing more

sample points would significantly improve the quality but this is obviously not possible within

the DXT5 format.

Instead of storing a bias and scale, one of the spare channels can also be used to store a rotation

of the normal vectors in a 4x4 block about the Z-axis, as suggested in [11, 12]. Such a rotation

can be used to find a much tighter bounding box of the X-Y vectors. In particular using _Y_X

DXT5 compression such a rotation can be used to make sure that the axis with the largest

dynamic range maps to the alpha channel, which, as such, is compressed with more precision. To

be able to map the axis with the largest dynamic range to the alpha channel, a rotation of up to

180 degrees may be required. This rotation can be stored as a constant value over the whole 4x4

block in one of the 5-bit channels. Instead of storing the angle of rotation, the cosine of the angle

can be stored, such that the cosine does not have to be calculated in a fragment program where

the vectors need to be rotated back to their original positions. The sine for a rotation in the range

[0, 180] degrees is always positive and can, as such, trivially be derived from the cosine in a

fragment program as follows.

sine = sqrt(1 - cosine * cosine)

The PSNR improvement from rotating the normals in a 4x4 block is significant and typically in

the range 2 to 3 dB. Unfortunately adjacent 4x4 blocks may need vastly different rotations, and

under bilinear or trilinear filtering noticeable artifacts may appear for filtered texel samples at

borders between two 4x4 blocks with different rotations. The X, Y and rotation are filtered

separately before the rotation is applied to the X and Y components. As such, a filtered rotation

is applied to filtered X and Y components, which is not the same as filtering X and Y

components that are first rotated back to their original position. In other words, unless the normal

map is only point sampled, using a rotation is also not an option to improve the quality of DXT1

or DXT5 normal map compression.

Of course a denormalization value can still be stored in one of the spare channels as described in

[8]. The denormalization value is used to scale down the normal vectors for lower mip levels,

such that specular highlights fade with distance to alleviate aliasing artifacts.

3.3 Tangent-Space 3Dc

The 3Dc format [10] is specifically designed for tangent-space normal map compression and

produces much better quality than DXT1 or DXT5 normal map compression. The 3Dc format

stores only two channels and, as such, cannot be used for object-space normal maps. The format

basically consists of two DXT5 alpha blocks for each 4x4 block of normals. In other words for

each 4x4 block there are 8 samples for the X components and also 8 independent samples for the

Y components. The Z components have to be derived in a fragment program.

The 3Dc format is also known as BC5 in DirectX 10 [5]. The same format can be loaded in

OpenGL as LATC or RGTC. Using the LATC format the luminance is replicated in all three

RGB channels. This can be particularly convenient, because this way the same swizzle (and

fragment program code) can be used for both LATC and _Y_X DXT5 (DXT5nm) compressed

normal maps. In other words the same fragment program can be used on hardware that does, and

does not support 3Dc. The following fragment program shows how the Z is derived from the X

and Y components when the normal map is stored in RGTC format.

normal.x = x [0, 1]

normal.y = y [0, 1]

normal.z = 0

normal.w = 0

MAD normal, normal, 2.0, -1.0

DP4 normal.z, normal, normal;

MAD normal, normal, { 1.0, 1.0, -1, 0 }, { 0, 0, 1, 0 };

RSQ temp, normal.z;

MUL normal.z, temp;

The following images show how 3Dc compression of normal maps, results in significantly less

banding compared to _Y_X DXT5 (DXT5nm).

3Dc compressed normal map on the right compared

to the original normal map on the left.

Several extensions to 3Dc are proposed in [11] and a new format specifically designed for

improved normal map compression is presented in [12]. However, these formats are not

available in current graphics hardware. On all DirectX 10 compatible hardware the 3Dc (or BC5)

format results in the best quality tangent-space normal map compression. On older hardware

which does not implement 3Dc the best quality is generally achieved using _Y_X DXT5

(DXT5nm).

4. Real-Time Compression on the CPU

While decompression from the formats described in the previous sections is done real-time in

hardware, compression to these formats may take a considerable amount of time. Existing

compressors are designed for high-quality off-line compression, not real-time compression [20,

21, 22]. However, real-time compression is quite useful to compress normal maps that are stored

on disk in a different (more space efficient) format, and to compress dynamically generated

normal maps.

In today's rendering engines, tangent-space normal maps are far more popular than object-space

normal maps. On current hardware there are no compression formats available for object-space

normal maps that work really well. The object-space normal map compression techniques

described in section 2 all result in noticeable artifacts, or the compression is exceedingly

expensive.

An object-space normal map can also not be used on an animated object. While the object

surface animates the object-space normal vectors stay pointing in the same object-space

direction. Tangent-space normal maps on the other hand, store normals relative to the tangent-

space at the triangle vertices. When the surface of an object animates and the tangent vectors

(stored at the triangle vertices) are transformed with the surface, the tangent-space normal

vectors that are stored relative to these tangent vectors will also animate with the surface. As

such the focus here is on real-time compression of tangent-space normal maps.

On hardware where the 3Dc (BC5 or LATC) format is not available, the _Y_X DXT5

(DXT5nm) format generally results in the best quality tangent-space normal map compression.

The real-time _Y_X DXT5 compressor is very similar to the real-time DXT5 compressor from

[23].

First the bounding box of X-Y normal space is calculated. The two lines that are used to

approximate the X and Y-values go from the minimums to the maximums of this bounding box.

To improve the Mean Square Error (MSE), the bounding box is inset on either end with a quarter

the distance between the sample points on the lines. The Y components are stored in the "green"

channel and there are 4 sample points on the line through "color" space. As such, the minimum

and maximum Y values are inset with 1/16th of the range. The X components are stored in the

"alpha" channel and there are 8 sample points on the line through "alpha" space. As such, the

minimum and maximum X values are inset with 1/32nd of the range. The inset is implemented

such that the minimum and maximum values are rounded outwards just like the YCoCg-DXT5

compressor from [24] does.

Only a single channel of the "color" channels is used to store the Y components of the normal

vectors. Using this knowledge, the real-time DXT5 compressor from [23] can be optimized

further specifically for _Y_X DXT5 compression. The best matching points on the line through

Y-space can be found in a similar way the best matching points on the line through "alpha" space

are found in the DXT5 compressor from [23]. First a set of cross-over points are calculated

where a Y value goes from being closest to one sample point to another.

byte mid = (max - min) / (2 * 3);

byte gb1 = max - mid;

byte gb2 = (2 * max + 1 * min) / 3 - mid;

byte gb3 = (1 * max + 2 * min) / 3 - mid;

A Y value can then be tested for being greater-equal to each of the cross-over points, and the

results of these comparisons (0 for false and 1 for true) can be added together to calculate an

index. This results in the following order where index 0 through 3 go from the minimum to the

maximum.

index: 0 1 2 3

value: min (max + 2 * min) / 3 (2 * max + min) / 3 max

However, the "color" sample points are ordered differently in the DXT5 format as follows.

index: 0 1 2 3

value: max min (2 * max + min) / 3 (max + 2 * min) / 3

Subtracting the results of the comparisons from four, and wrapping the result with a bitwise

logical AND with 3, results in the following order.

index: 0 1 2 3

value: min max (2 * max + min) / 3 (max + 2 * min) / 3

The order is close to correct, but the min and max are still swapped. The following code shows

how the Y values are compared to the cross-over points, and how the indices are calculated from

the results of the comparisons, where index 0 and 1 are swapped at the end by XOR-ing with the

result of the comparison (2 > index).

unsigned int result = 0;

for (int i = 15; i >= 0; i--) {

 result <<= 2;

 byte g = block[i*4];

 int b1 = (g >= gb1);

 int b2 = (g >= gb2);

 int b3 = (g >= gb3);

 int index = (4 - b1 - b2 - b3) & 3;

 index ^= (2 > index);

 result |= index;

}

Using SIMD instructions each byte comparison results in a byte with either all zero bits (when

the expression is false), or all one bits (when the expression is true). When interpreted as a

signed (two's-complements) integer, the result of a byte comparison is equal to either the number

0 (for false) or the number -1 (for true). Instead of explicitly subtracting a 1 for a comparison that

results in true, the actual result of the comparison can simply be added to the value four as a

signed integer.

The calculation of the indices for the "alpha" channel is very similar to the calculation used in the

real-time DXT5 compressor from [23]. However, the calculation can be optimized further by

also selecting the best matching sample points with subtraction as opposed to addition. First a set

of cross-over points are calculated where an X value goes from being closest to one sample point

to another.

byte mid = (max - min) / (2 * 7);

byte ab1 = max - mid;

byte ab2 = (6 * max + 1 * min) / 7 - mid;

byte ab3 = (5 * max + 2 * min) / 7 - mid;

byte ab4 = (4 * max + 3 * min) / 7 - mid;

byte ab5 = (3 * max + 4 * min) / 7 - mid;

byte ab6 = (2 * max + 5 * min) / 7 - mid;

byte ab7 = (1 * max + 6 * min) / 7 - mid;

An X value can then be tested for being greater-equal to each of the cross-over points, and the

results of these comparisons (0 for false and 1 for true) can be subtracted from 8 and wrapped

using a bitwise logical AND with 7 to calculate the index. The first two indices are also swapped

by xoring with the result of the comparison (2 > index) as shown in the following code.

byte indices[16];

for (int i = 0; i < 16; i++) {

 byte a = block[i*4];

 int b1 = (a >= ab1);

 int b2 = (a >= ab2);

 int b3 = (a >= ab3);

 int b4 = (a >= ab4);

 int b5 = (a >= ab5);

 int b6 = (a >= ab6);

 int b7 = (a >= ab7);

 int index = (8 - b1 - b2 - b3 - b4 - b5 - b6 - b7) & 7;

 indices[i] = index ^ (2 > index);

}

The full implementation of the real-time _Y_X DXT5 compressor can be found in appendix A.

MMX and SSE2 implementations of this real-time compressor can be found in appendix B and C

respectively.

Where available, the 3Dc (BC5 or LATC) format results in the best quality tangent-space normal

map compression. The real-time 3Dc compressor first calculates the bounding box of X-Y

normal space just like the _Y_X DXT5 compressor does. The two lines that are used to

approximate the X and Y-values go from the minimums to the maximums of this bounding box.

To improve the Mean Square Error (MSE), the bounding box is inset on either end with a quarter

the distance between the sample points on the lines. The 3Dc format basically stores two DXT5

alpha channels both with the same encoding and 8 sample points. As such, on both axes the

bounding box is inset on either end with 1/32th of the range. The same code as used for the

_Y_X DXT5 compression, is used here as well to calculate the "alpha" channel indices, except

that it is used twice. The full implementation of the real-time 3Dc compressor can be found in

appendix A. MMX and SSE2 implementations of this real-time compressor can be found in

appendix B and C respectively.

5. Real-Time Compression on the GPU

Real-time compression of tangent-space normal maps can also be performed on the GPU. This is

possible thanks to new features available on DX10-class graphics hardware that enable rendering

to integer textures and the use of bitwise and arithmetic integer operations..

To compress a normal map, a fragment program is used for each block of 4x4 texels by

rendering a quad over the entire destination surface. The result of this fragment program is a

compressed DXT block that is written to the texels of an integer texture. Both, DXT5 and 3Dc

blocks are 128 bits, which is equal to one RGBA texel with 32 bits per component. As such, an

unsigned integer RGBA texture is used as the render target when compressing a normal map to

either format. The contents of this render target are then copied to the corresponding DXT

texture by using Pixel Buffer Objects. This process is very similar to the one used for YCoCg-

DXT5 compression that is described in more detail in [24].

3Dc compressed textures are exposed in OpenGL through two different extensions:

GL_EXT_texture_compression_latc [25], and GL_EXT_texture_compression_rgtc [26]. The

former maps the X and Y components to the luminance and alpha channels, while the latter maps

the X and Y components to red and green respectively, where the remaining channels are set to

0.

In the implementation described here the LATC format is used. This is slightly more convenient,

because it allows sharing the same shader code used for the normal reconstruction:

N.xy = 2 * tex2D(image, texcoord).wy - 1;

N.z = sqrt(saturate(1 - N.x * N.x - N.y * N.y));

When using LATC the luminance is replicated in the RGB channels, so the W-Y swizzle maps

the luminance and alpha components to X and Y. Similarly, when using _Y_X DXT5, the W-Y

swizzle maps the green and alpha components to X and Y.

The same code as used in [24] to encode the alpha channel for YCoCg-DXT5 compression, can

also be used to encode the X and Y components for 3Dc compression, and the X component for

_Y_X DXT5 compression. As shown in Section 4, the _Y_X DXT5 compressor can also be

optimized to compute the DXT1 block by fitting only the Y component. However, as noted in

[23], the alpha space is a one-dimensional space and the points on the line through alpha space

are equidistant, which allows the closest point for each original alpha value to be calculated

through division. On the CPU this requires a rather slow scalar integer division, because there

are no MMX or SSE2 instructions available for integer division. The division can be

implemented as an integer multiplication with a shift. However, the divisor is not a constant

which means a lookup table is required to get the multiplier. Multiplication also increases the

dynamic range which limits the amount of parallelism that can be exploited through a SIMD

instruction set. On the CPU there is a clear benefit to exploiting maximum parallelism by using

simple operations on the smallest possible elements (bytes) without increasing the dynamic

range. However, on the GPU, scalar floating point math is used, and a division and/or

multiplication is relatively cheap. As such, the X and Y components can be mapped to the

respective indices by applying only a scale and a bias. The CG code for the index calculation of

the Y component for the _Y_X DXT5 format is as follows:

const int GREEN_RANGE = 3;

float bias = maxGreen + (maxGreen - minGreen) / (2.0 * GREEN_RANGE);

float scale = 1.0f / (maxGreen - minGreen);

// Compute indices

uint indices = 0;

for (int i = 0; i < 16; i++)

{

 uint index = saturate((bias - block[i].y) * scale) * GREEN_RANGE;

 indices |= index << (i * 2);

}

uint i0 = (indices & 0x55555555);

uint i1 = (indices & 0xAAAAAAAA) >> 1;

indices = ((i0 ^ i1) << 1) | i1;

The same can be done for the X component of the _Y_X DXT5 format, and for both the X and Y

component of the 3Dc format:

const int ALPHA_RANGE = 7;

float bias = maxAlpha + (maxAlpha - minAlpha) / (2.0 * ALPHA_RANGE);

float scale = 1.0f / (maxAlpha - minAlpha);

uint2 indices = 0;

for (int i = 0; i < 6; i++)

{

 uint index = saturate((bias - block[i].x) * scale) * ALPHA_RANGE;

 indices.x |= index << (3 * i);

}

for (int i = 6; i < 16; i++)

{

 uint index = saturate((bias - block[i].x) * scale) * ALPHA_RANGE;

 indices.y |= index << (3 * i - 18);

}

uint2 i0 = (indices >> 0) & 0x09249249;

uint2 i1 = (indices >> 1) & 0x09249249;

uint2 i2 = (indices >> 2) & 0x09249249;

i2 ^= i0 & i1;

i1 ^= i0;

i0 ^= (i1 | i2);

indices.x = (i2.x << 2) | (i1.x << 1) | i0.x;

indices.y = (((i2.y << 2) | (i1.y << 1) | i0.y) << 2) | (indices.x >>

16);

indices.x <<= 16;

The full Cg 2.0 implementations of the real-time _Y_X DXT5 (DXT5nm) normal map

compressor, and the real-time 3Dc (BC5 or LATC) normal map compressor, can be found in

appendix D.

6. Compression on the CPU vs. GPU

As shown in the previous sections high performance normal map compression can be

implemented on both the CPU and the GPU. Whether the compression is best implemented on

the CPU or the GPU is application dependent.

Real-time compression on the CPU is useful for normal maps that are dynamically created on the

CPU. Compression on the CPU is also particularly useful for transcoding normal maps that are

streamed from disk in a format that cannot be used for rendering. For example, a normal map or

a height map may be stored in JPEG format on disk and, as such, cannot be used directly for

rendering. Only some parts of the JPEG decompression algorithm can currently be implemented

efficiently on the GPU. Memory can be saved on the graphics card, and rendering performance

can be improved, by decompressing the original data and re-compressing it to DXT format. The

advantage of re-compressing the texture data on the CPU is that the amount of data uploaded to

the graphics card is minimal. Furthermore, when the compression is performed on the CPU, the

full GPU can be used for rendering work as it does not need to perform any compression. With a

definite trend to a growing number of cores on today's CPUs, there are typically free cores laying

around that can easily be used for texture compression.

Real-time compression on the GPU may be less useful for transcoding, because of increased

bandwidth requirements for uploading uncompressed texture data and because the GPU may

already be tasked with expensive rendering work. However, real-time compression on the GPU

is very useful for compressed render targets. The compression on the GPU can be used to save

memory when rendering to a texture. Furthermore, such compressed render targets can improve

the performance if the data from the render target is used for further rendering. The render target

is compressed once, while the resulting data may be accessed many times during rendering. The

compressed data results in reduced bandwidth requirements during rasterization and can, as such,

significantly improve performance.

7. Results

7.1 Object-Space

The object-space normal map compression techniques have been tested with the object-space

normal maps shown below.

Object-Space Normal Maps

1. arcade 2. tentacle 3. chest 4. face

The Peak Signal to Noise Ratio (PSNR) has been calculated over the unweighted X, Y and Z

values, stored as 8-bit unsigned integers.

PSNR

 image

XYZ

DXT1

re-normalized

XYZ

DXT1

XY_Z

DXT5

re-normalized

XY_Z

DXT5

 01_arcade

30.90

32.95

34.02

37.23

 02_tentacle

36.68

38.29

41.04

41.62

 03_chest

39.24

40.79

42.22

43.47

 04_face

37.38

38.99

41.03

42.60

file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/01_arcade.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/02_tentacle.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/03_chest.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/04_face.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/01_arcade.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/02_tentacle.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/03_chest.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/object/04_face.png

7.2 Tangent-Space

The tangent-space normal map compression techniques have been tested with the tangent-space

normal maps shown below.

Tangent-Space Normal Maps

1. dot1 2. dot2 3. dot3 4. dot4

5. lumpy 6. voronoi 7. turtle 8. normalmap

9. metal 10. skin 11. onetile 12. barrel

13. arcade 14. tentacle 15. chest 16. face

The Peak Signal to Noise Ratio (PSNR) has been calculated over the unweighted X, Y and Z

values, stored as 8-bit unsigned integers.

Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/01_dot1.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/02_dot2.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/03_dot3.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/04_dot4.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/05_lumpy.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/06_voronoi.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/07_turtle.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/08_normalmap.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/09_metal.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/10_skin.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/11_onetile.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/12_barrel.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/13_arcade.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/14_tentacle.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/15_chest.png
Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/16_face.png

PSNR

 image

XY_

DXT1

re-

normalized

XYZ

DXT1

_YZX

DXT5

re-

normalized

_YZX

DXT5

_Y_X

DXT5

3Dc

 01_dot1

27.61

29.51

32.00

35.16

35.07

40.15

 02_dot2

25.39

26.45

29.55

32.92

32.68

36.70

 03_dot3

21.88

23.05

27.34

30.77

30.02

34.13

 04_dot4

23.18

24.46

29.16

32.81

31.38

35.80

 05_lumpy

30.54

31.13

34.70

37.15

37.73

41.92

 06_voronoi

37.53

38.16

41.72

42.16

43.93

48.23

 07_turtle

36.12

37.06

38.74

39.93

41.22

45.76

 08_normalmap

35.57

36.36

37.78

38.95

40.00

44.49

 09_metal

41.65

41.99

46.37

46.55

49.03

54.10

 10_skin

28.95

29.48

34.68

36.20

36.83

41.37

 11_onetile

29.08

29.82

34.17

35.98

36.76

41.14

 12_barrel

29.93

31.67

33.15

36.79

37.03

40.20

 13_arcade

32.31

33.63

36.86

39.24

39.81

44.61

 14_tentacle

39.03

40.47

40.30

41.39

43.23

47.82

 15_chest

38.92

41.03

41.64

42.29

42.87

46.52

 16_face

38.27

39.58

41.59

42.55

43.71

48.61

file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/01_dot1.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/02_dot2.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/03_dot3.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/04_dot4.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/05_lumpy.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/06_voronoi.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/07_turtle.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/08_normalmap.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/09_metal.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/10_skin.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/11_onetile.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/12_barrel.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/13_arcade.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/14_tentacle.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/15_chest.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/16_face.png

The following graph uses the 3Dc format to show the quality difference between the

orthographic and stereographic projections. The stereographic projection results in more

consistent results but for most normal maps the quality is significantly lower.

The following graph is only of theoretical interest, in that it shows the quality improvement from

rotating the normals in a 4x4 block, and storing the rotation in one of the unused channels in the

_Y_X DXT5 format. The graph shows the quality improvement for normal maps that are only

point sampled, because filtering causes noticeable artifacts for texel samples between 4x4 blocks

with different rotations.

7.3 Real-Time Tangent-Space

The real-time tangent-space normal map compressors have been tested with the same tangent-

space normal maps shown above. The Peak Signal to Noise Ratio (PSNR) has been calculated

over the unweighted X, Y and Z values, stored as 8-bit unsigned integers.

PSNR

 image

off-line

_Y_X

DXT5

real-time

_Y_X

DXT5

off-line

3Dc

real-time

3Dc

 01_dot1

35.07

33.36

40.15

37.99

 02_dot2

32.68

31.67

36.70

35.67

 03_dot3

30.02

29.03

34.13

33.22

 04_dot4

31.38

30.49

35.80

34.89

 05_lumpy

37.73

36.63

41.92

40.63

 06_voronoi

43.93

42.99

48.23

46.99

 07_turtle

41.22

40.30

45.76

44.50

 08_normalmap

40.00

38.99

44.49

43.26

 09_metal

49.03

47.60

54.10

52.45

 10_skin

36.83

35.69

41.37

40.20

 11_onetile

36.76

35.67

41.14

39.92

 12_barrel

37.03

35.51

40.20

39.11

 13_arcade

39.81

38.05

44.61

42.18

 14_tentacle

43.23

41.90

47.82

46.31

 15_chest

42.87

41.95

46.52

45.38

 16_face

43.71

42.85

48.61

47.53

file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/01_dot1.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/02_dot2.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/03_dot3.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/04_dot4.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/05_lumpy.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/06_voronoi.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/07_turtle.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/08_normalmap.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/09_metal.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/10_skin.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/11_onetile.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/12_barrel.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/13_arcade.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/14_tentacle.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/15_chest.png
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/images/tangent/16_face.png

The performance of the SIMD optimized real-time compressors has been tested on an Intel® 2.8

GHz dual-core Xeon® ("Paxville" 90nm NetBurst microarchitecture) and an Intel® 2.9 GHz

Core™2 Extreme ("Conroe" 65nm Core 2 microarchitecture). Only a single core of these

processors was used for the compression. Since the texture compression is block based, the

compression algorithms can easily use multiple threads to utilize all cores of these processors.

When using multiple cores there is an expected linear speed up with the number of available

cores. The performance of the Cg 2.0 implementations has also been tested on a NVIDIA

GeForce 8600 GTS and a NVIDIA GeForce 8800 GTX.

The following figure shows the number of Mega Pixels that can be compressed to the _Y_X

DXT5 format per second (higher MP/s = better).

The following figure shows the number of Mega Pixels that can be compressed to the 3Dc

format per second (higher MP/s = better).

8. Conclusion

Existing color texture compression formats can also be used to store normal maps, but the results

vary. The latest graphics hardware also implements formats specifically designed for normal

map compression. While decompression from these formats happens in real-time in hardware

during rendering, compression to these formats may take a considerable amount of time. Existing

compressors are designed for high-quality off-line compression, not real-time compression.

However, at the cost of a little quality, normal maps can also be compressed real-time on both

the CPU and GPU, which is useful for transcoding normal maps from a different format and

compression of dynamically generated normal maps.

9. References

1. Simulation of Wrinkled Surfaces.

James F. Blinn

In Proceedings of SIGGRAPH, vol. 12, #3, pp. 286-292, 1978

Available Online: http://portal.acm.org/citation.cfm?id=507101

2. Efficient Bump Mapping Hardware.

Mark Peercy, John Airey, Brian Cabral

Computer Graphics, vol. 31, pp. 303-306, 1997

Available Online: http://citeseer.ist.psu.edu/peercy97efficient.html

3. S3 Texture Compression

Pat Brown

NVIDIA Corporation, November 2001

Available Online: http://oss.sgi.com/projects/ogl-

sample/registry/EXT/texture_compression_s3tc.txt

4. Compressed Texture Resources (Direct3D 9)

Microsoft Developer Network

MSDN, November 2007

Available Online: http://msdn2.microsoft.com/en-us/library/bb204843.aspx

5. Block Compression (Direct3D 10)

Microsoft Developer Network

MSDN, November 2007

Available Online: http://msdn2.microsoft.com/en-us/library/bb694531.aspx

6. Image Coding using Block Truncation Coding

E.J. Delp, O.R. Mitchell

IEEE Transactions on Communications, vol. 27(9), pp. 1335-1342, September 1979

Available Online: http://scholarsmine.umr.edu/post_prints/01094560_09007dcc8030cc78.html

7. Bump Map Compression

Simon Green

NVIDIA Technical Report, October 2001

Available Online: http://developer.nvidia.com/object/bump_map_compression.html

file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/wrinkledsurfaces.html
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/peercy97efficient.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/texture_compression_s3tc_final.txt
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/MSDN_DXT.htm
http://msdn2.microsoft.com/en-us/library/bb694531.aspx
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/btc.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/Bump_Map_Compression.pdf

8. Normal Map Compression

ATI Technologies Inc

ATI, August 2003

Available Online: http://www.ati.com/developer/NormalMapCompression.pdf

9. Normal Map Compression

Jakub Klarowicz

Shader X2: Shader Programming Tips & Tricks with DirectX 9

Available Online: http://www.shaderx2.com

10. 3Dc White Paper

ATI Technologies Inc

ATI, April 2004

Available Online: http://ati.de/products/radeonx800/3DcWhitePaper.pdf

11. High Quality Normal Map Compression

Jacob Munkberg, Tomas Akenine-Möller, Jacob Ström

Graphics Hardware 2006

Available Online: http://graphics.cs.lth.se/research/papers/normals2006/

12. Tight Frame Normal Map Compression

Jacob Munkberg, Ola Olsson, Jacob Ström, Tomas Akenine-Möller

Graphics Hardware 2007

Available Online: http://graphics.cs.lth.se/research/papers/2007/tightframe/

13. Fast and Efficient Normal Map Compression Based on Vector Quantization

T. Yamasaki, K. Aizawa

In Proceedings of ICASSP (2006), vol. 2, pp. 2-12

Available Online:

http://www.ee.columbia.edu/~dpwe/LabROSA/proceeds/icassp/2006/pdfs/0200009.pdf

14. A Hybrid Adaptive Normal Map Texture Compression Algorithm

B. Yang, Z. Pan

In International Conference on Artificial Reality and Telexistence (2006), IEEE Computer

Society, pp. 349-354

Available Online: http://doi.ieeecomputersociety.org/10.1109/ICAT.2006.11

15. Mathematical error analysis of normal map compression based on unity condition

Toshihiko Yamasaki, Kazuya Hayase, Kiyoharu Aizawa

IEEE International Conference on Image Processing, vol. 2, pp. 253-6, September 2005

Available Online: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1530039

16. Mathematical PSNR Prediction Model Between Compressed Normal Maps and Rendered 3D

Images

Toshihiko Yamasaki, Kazuya Hayase, Kiyoharu Aizawa

Pacific Rim Conference on Multimedia (PCM2005) LNCS 3768, pp. 584-594, Jeju Island,

Korea, Nov. 13-16, 2005

Available Online: http://www.springerlink.com/content/f3707080w8553g3l/

file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/NormalMapCompression.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/3DcWhitePaper.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/normals_tc.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/shapenormal.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/0200009.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/27540349.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/01530039.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/mathematical_prediction_model.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/mathematical_prediction_model.pdf

17. Real-time rendering of normal maps with discontinuities

Evgueni Parilov, Ilya Rosenberg, Denis Zorin

CIMS Technical Report, TR2005-872, August 2005

Available Online:

http://csdocs.cs.nyu.edu/Dienst/UI/2.0/Describe/ncstrl.nyu_cs%2FTR2005-872t

18. Mipmapping normal maps

M. Toksvig

Journal of Graphics Tools 10, 3, 65-71. 2005

Available Online: http://developer.nvidia.com/object/mipmapping_normal_maps.html

19. Frequency Domain Normal Map Filtering

Charles Han, Bo Sun, Ravi Ramamoorthi, Eitan Grinspun

SIGGRAPH 2007

Available Online: http://www.cs.columbia.edu/cg/normalmap/normalmap.pdf

20. ATI Compressonator Library

Seth Sowerby, Daniel Killebrew

ATI Technologies Inc, The Compressonator version 1.27.1066, March 2006

Available Online: http://www.ati.com/developer/compressonator.html

21. NVIDIA DDS Utilities

NVIDIA

NVIDIA DDS Utilities, April 2006

Available Online: http://developer.nvidia.com/object/nv_texture_tools.html

22. NVIDIA Texture Tools

NVIDIA

NVIDIA Texture Tools, September 2007

Available Online: http://developer.nvidia.com/object/texture_tools.html

23. Real-Time DXT Compression

J.M.P. van Waveren

Intel Software Network, October 2006

Available Online: http://www.intel.com/cd/ids/developer/asmo-na/eng/324337.htm

24. Real-Time YCoCg-DXT Compression

J.M.P. van Waveren, Ignacio Castaño

NVIDIA, October 2007

Available Online: http://news.developer.nvidia.com/2007/10/real-time-ycocg.html

25. GL_EXT_texture_compression_latc

Available Online: http://www.opengl.org/registry/specs/EXT/texture_compression_latc.txt

26. GL_EXT_texture_compression_rgtc

Available Online: http://www.opengl.org/registry/specs/EXT/texture_compression_rgtc.txt

file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/normalmapswithdiscontinuities.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/Mipmapping_Normal_Maps.pdf
file:///Z:/TechDocs/Games/Rage/NormalMapDXT/papers/normalmap.pdf
http://www.ati.com/developer/compressonator.html
http://developer.nvidia.com/object/nv_texture_tools.html
http://developer.nvidia.com/object/texture_tools.html
file:///Z:/TechDocs/Games/ETQW/RTDXT/rtdxt.html
file:///Z:/TechDocs/Games/Rage/YCoCgDXT/ycocgdxt.html
http://www.opengl.org/registry/specs/EXT/texture_compression_latc.txt
http://www.opengl.org/registry/specs/EXT/texture_compression_rgtc.txt

Appendix A

/*

 Real-Time Normal Map Compression (C++)

 Copyright (C) 2008 Id Software, Inc.

 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

*/

typedef unsigned char byte;

typedef unsigned short word;

typedef unsigned int dword;

#define INSET_COLOR_SHIFT 4 // inset color channel

#define INSET_ALPHA_SHIFT 5 // inset alpha channel

#define C565_5_MASK 0xF8 // 0xFF minus last three bits

#define C565_6_MASK 0xFC // 0xFF minus last two bits

byte *globalOutData;

void EmitByte(byte b) {

 globalOutData[0] = b;

 globalOutData += 1;

}

void EmitWord(word s) {

 globalOutData[0] = (s >> 0) & 255;

 globalOutData[1] = (s >> 8) & 255;

 globalOutData += 2;

}

void EmitDoubleWord(dword i) {

 globalOutData[0] = (i >> 0) & 255;

 globalOutData[1] = (i >> 8) & 255;

 globalOutData[2] = (i >> 16) & 255;

 globalOutData[3] = (i >> 24) & 255;

 globalOutData += 4;

}

word NormalYTo565(byte y) {

 return ((y >> 2) << 5);

}

void ExtractBlock(const byte *inPtr, const int width, byte *block) {

 for (int j = 0; j < 4; j++) {

 memcpy(&block[j*4*4], inPtr, 4*4);

 inPtr += width * 4;

 }

}

void GetMinMaxNormalsBBox(const byte *block, byte *minNormal, byte

*maxNormal) {

 minNormal[0] = minNormal[1] = 255;

 maxNormal[0] = maxNormal[1] = 0;

 for (int i = 0; i < 16; i++) {

 if (block[i*4+0] < minNormal[0]) {

 minNormal[0] = block[i*4+0];

 }

 if (block[i*4+1] < minNormal[1]) {

 minNormal[1] = block[i*4+1];

 }

 if (block[i*4+0] > maxNormal[0]) {

 maxNormal[0] = block[i*4+0];

 }

 if (block[i*4+1] > maxNormal[1]) {

 maxNormal[1] = block[i*4+1];

 }

 }

}

void InsetNormalsBBoxDXT5(byte *minNormal, byte *maxNormal) {

 int inset[4];

 int mini[4];

 int maxi[4];

 inset[0] = (maxNormal[0] - minNormal[0]) - ((1<<<< INSET_ALPHA_SHIFT)

+ inset[0]) >> INSET_ALPHA_SHIFT;

 mini[1] = ((minNormal[1] << INSET_COLOR_SHIFT) + inset[1]) >>

INSET_COLOR_SHIFT;

 maxi[0] = ((maxNormal[0] << INSET_ALPHA_SHIFT) - inset[0]) >>

INSET_ALPHA_SHIFT;

 maxi[1] = ((maxNormal[1] << INSET_COLOR_SHIFT) - inset[1]) >>

INSET_COLOR_SHIFT;

 mini[0] = (mini[0] >= 0) ? mini[0] : 0;

 mini[1] = (mini[1] >= 0) ? mini[1] : 0;

 maxi[0] = (maxi[0] <= 255) ? maxi[0] : 255;

 maxi[1] = (maxi[1] <= 255) ? maxi[1] : 255;

 minNormal[0] = mini[0];

 minNormal[1] = (mini[1] & C565_6_MASK) | (mini[1] >> 6);

 maxNormal[0] = maxi[0];

 maxNormal[1] = (maxi[1] & C565_6_MASK) | (maxi[1] >> 6);

}

void InsetNormalsBBox3Dc(byte *minNormal, byte *maxNormal) {

 int inset[4];

 int mini[4];

 int maxi[4];

 inset[0] = (maxNormal[0] - minNormal[0]) - ((1<<<< INSET_ALPHA_SHIFT)

+ inset[0]) >> INSET_ALPHA_SHIFT;

 mini[1] = ((minNormal[1] << INSET_ALPHA_SHIFT) + inset[1]) >>

INSET_ALPHA_SHIFT;

 maxi[0] = ((maxNormal[0] << INSET_ALPHA_SHIFT) - inset[0]) >>

INSET_ALPHA_SHIFT;

 maxi[1] = ((maxNormal[1] << INSET_ALPHA_SHIFT) - inset[1]) >>

INSET_ALPHA_SHIFT;

 mini[0] = (mini[0] >= 0) ? mini[0] : 0;

 mini[1] = (mini[1] >= 0) ? mini[1] : 0;

 maxi[0] = (maxi[0] <= 255) ? maxi[0] : 255;

 maxi[1] = (maxi[1] <= 255) ? maxi[1] : 255;

 minNormal[0] = mini[0];

 minNormal[1] = mini[1];

 maxNormal[0] = maxi[0];

 maxNormal[1] = maxi[1];

}

void EmitAlphaIndices(const byte *block, const int offset, const byte

minAlpha, const byte maxAlpha) {

 byte mid = (maxAlpha - minAlpha) / (2 * 7);

 byte ab1 = maxAlpha - mid;

 byte ab2 = (6 * maxAlpha + 1 * minAlpha) / 7 - mid;

 byte ab3 = (5 * maxAlpha + 2 * minAlpha) / 7 - mid;

 byte ab4 = (4 * maxAlpha + 3 * minAlpha) / 7 - mid;

 byte ab5 = (3 * maxAlpha + 4 * minAlpha) / 7 - mid;

 byte ab6 = (2 * maxAlpha + 5 * minAlpha) / 7 - mid;

 byte ab7 = (1 * maxAlpha + 6 * minAlpha) / 7 - mid;

 block += offset;

 byte indices[16];

 for (int i = 0; i < 16; i++) {

 byte a = block[i*4];

 int b1 = (a >= ab1);

 int b2 = (a >= ab2);

 int b3 = (a >= ab3);

 int b4 = (a >= ab4);

 int b5 = (a >= ab5);

 int b6 = (a >= ab6);

 int b7 = (a >= ab7);

 int index = (8 - b1 - b2 - b3 - b4 - b5 - b6 - b7) & 7;

 indices[i] = index ^ (2 > index);

 }

 EmitByte((indices[0] >> 0) | (indices[1] << 3) | (indices[2] << 6));

 EmitByte((indices[2] >> 2) | (indices[3] << 1) | (indices[4] << 4) |

(indices[5] << 7));

 EmitByte((indices[5] >> 1) | (indices[6] << 2) | (indices[7] << 5));

 EmitByte((indices[8] >> 0) | (indices[9] << 3) | (indices[10] << 6));

 EmitByte((indices[10] >> 2) | (indices[11] << 1) | (indices[12] << 4) |

(indices[13] << 7));

 EmitByte((indices[13] >> 1) | (indices[14] << 2) | (indices[15] << 5));

}

void EmitGreenIndices(const byte *block, const int offset, const byte

minGreen, const byte maxGreen) {

 byte mid = (maxGreen - minGreen) / (2 * 3);

 byte gb1 = maxGreen - mid;

 byte gb2 = (2 * maxGreen + 1 * minGreen) / 3 - mid;

 byte gb3 = (1 * maxGreen + 2 * minGreen) / 3 - mid;

 block += offset;

 unsigned int result = 0;

 for (int i = 15; i >= 0; i--) {

 result <<= 2;

 byte g = block[i*4];

 int b1 = (g >= gb1);

 int b2 = (g >= gb2);

 int b3 = (g >= gb3);

 int index = (4 - b1 - b2 - b3) & 3;

 index ^= (2 > index);

 result |= index;

 }

 EmitUInt(result);

}

void CompressNormalMapDXT5(const byte *inBuf, byte *outBuf, int width, int

height, int &outputBytes) {

 byte block[64];

 byte normalMin[4];

 byte normalMax[4];

 globalOutData = outBuf;

 for (int j = 0; j < height; j += 4, inBuf += width * 4*4) {

 for (int i = 0; i < width; i += 4) {

 ExtractBlock(inBuf + i * 4, width, block);

 GetMinMaxNormalsBBox(block, normalMin, normalMax);

 InsetNormalsBBoxDXT5(normalMin, normalMax);

 // Write out Nx into alpha channel.

 EmitByte(normalMax[0]);

 EmitByte(normalMin[0]);

 EmitAlphaIndices(block, 0, normalMin[0], normalMax[0]);

 // Write out Ny into green channel.

 EmitUShort(NormalYTo565(normalMax[1]));

 EmitUShort(NormalYTo565(normalMin[1]));

 EmitGreenIndices(block, 1, normalMin[1], normalMax[1]);

 }

 }

 outputBytes = outData - outBuf;

}

void CompressNormalMap3Dc(const byte *inBuf, byte *outBuf, int width, int

height, int &outputBytes) {

 byte block[64];

 byte normalMin[4];

 byte normalMax[4];

 globalOutData = outBuf;

 for (int j = 0; j < height; j += 4, inBuf += width * 4*4) {

 for (int i = 0; i < width; i += 4) {

 ExtractBlock(inBuf + i * 4, width, block);

 GetMinMaxNormalsBBox(block, normalMin, normalMax);

 InsetNormalsBBox3Dc(normalMin, normalMax);

 // Write out Nx as an alpha channel.

 EmitByte(normalMax[0]);

 EmitByte(normalMin[0]);

 EmitAlphaIndices(block, 0, normalMin[0], normalMax[0]);

 // Write out Ny as an alpha channel.

 EmitByte(normalMax[1]);

 EmitByte(normalMin[1]);

 EmitAlphaIndices(block, 1, normalMin[1], normalMax[1]);

 }

 }

 outputBytes = outData - outBuf;

}

Appendix B

/*

 Real-Time Normal Map Compression (MMX)

 Copyright (C) 2008 Id Software, Inc.

 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

*/

#define ALIGN16(x) __declspec(align(16)) x

#define R_SHUFFLE_D(x, y, z, w) (((w) & 3) << 6 | ((z) & 3) << 4 | (

(y) & 3) << 2 | ((x) & 3))

ALIGN16(static dword SIMD_MMX_dword_byte_mask[2]) = { 0x000000FF,

0x000000FF };

ALIGN16(static dword SIMD_MMX_dword_alpha_bit_mask0[2]) = {

7<<<<<<<<<<<<<<<<<<<<<<<< INSET_ALPHA_SHIFT, 1 << INSET_COLOR_SHIFT, 1, 1 };

ALIGN16(static word SIMD_MMX_word_insetNormalDXT5ShiftDown[4]) = { 1 << (

16 - INSET_ALPHA_SHIFT), 1 << (16 - INSET_COLOR_SHIFT), 0, 0 };

ALIGN16(static word SIMD_MMX_word_insetNormalDXT5QuantMask[4]) = { 0xFF,

C565_6_MASK, 0xFF, 0xFF };

ALIGN16(static word SIMD_MMX_word_insetNormalDXT5Rep[4]) = { 0, 1 << (16 -

6), 0, 0 };

ALIGN16(static word SIMD_MMX_word_insetNormal3DcRound[4]) = { ((1<<<<

INSET_ALPHA_SHIFT, 1 << INSET_ALPHA_SHIFT, 1, 1 };

ALIGN16(static word SIMD_MMX_word_insetNormal3DcShiftDown[4]) = { 1 << (16

- INSET_ALPHA_SHIFT), 1 << (16 - INSET_ALPHA_SHIFT), 0, 0 };

ALIGN16(static byte SIMD_MMX_byte_0[8]) = { 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00 };

ALIGN16(static byte SIMD_MMX_byte_1[8]) = { 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01 };

ALIGN16(static byte SIMD_MMX_byte_2[8]) = { 0x02, 0x02, 0x02, 0x02, 0x02,

0x02, 0x02, 0x02 };

ALIGN16(static byte SIMD_MMX_byte_7[8]) = { 0x07, 0x07, 0x07, 0x07, 0x07,

0x07, 0x07, 0x07 };

ALIGN16(static byte SIMD_MMX_byte_8[8]) = { 0x08, 0x08, 0x08, 0x08, 0x08,

0x08, 0x08, 0x08 };

ALIGN16(static byte SIMD_MMX_byte_not[8]) = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

0xFF, 0xFF, 0xFF };

void ExtractBlock_MMX(const byte *inPtr, int width, byte *block) {

 __asm {

 mov esi, inPtr

 mov edi, block

 mov eax, width

 shl eax, 2

 movq mm0, qword ptr [esi+0]

 movq qword ptr [edi+ 0], mm0

 movq mm1, qword ptr [esi+8]

 movq qword ptr [edi+ 8], mm1

 movq mm2, qword ptr [esi+eax+0]

 movq qword ptr [edi+16], mm2

 movq mm3, qword ptr [esi+eax+8]

 movq qword ptr [edi+24], mm3

 movq mm4, qword ptr [esi+eax*2+0]

 movq qword ptr [edi+32], mm4

 movq mm5, qword ptr [esi+eax*2+8]

 add esi, eax

 movq qword ptr [edi+40], mm5

 movq mm6, qword ptr [esi+eax*2+0]

 movq qword ptr [edi+48], mm6

 movq mm7, qword ptr [esi+eax*2+8]

 movq qword ptr [edi+56], mm7

 emms

 }

}

void GetMinMaxNormalsBBox_MMX(const byte *block, byte *minNormal, byte

*maxNormal) {

 __asm {

 mov eax, block

 mov esi, minNormal

 mov edi, maxNormal

 pshufw mm0, qword ptr [eax+ 0], R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm1, qword ptr [eax+ 0], R_SHUFFLE_D(0, 1, 2, 3)

 pminub mm0, qword ptr [eax+ 8]

 pmaxub mm1, qword ptr [eax+ 8]

 pminub mm0, qword ptr [eax+16]

 pmaxub mm1, qword ptr [eax+16]

 pminub mm0, qword ptr [eax+24]

 pmaxub mm1, qword ptr [eax+24]

 pminub mm0, qword ptr [eax+32]

 pmaxub mm1, qword ptr [eax+32]

 pminub mm0, qword ptr [eax+40]

 pmaxub mm1, qword ptr [eax+40]

 pminub mm0, qword ptr [eax+48]

 pmaxub mm1, qword ptr [eax+48]

 pminub mm0, qword ptr [eax+56]

 pmaxub mm1, qword ptr [eax+56]

 pshufw mm6, mm0, R_SHUFFLE_D(2, 3, 2, 3)

 pshufw mm7, mm1, R_SHUFFLE_D(2, 3, 2, 3)

 pminub mm0, mm6

 pmaxub mm1, mm7

 movd dword ptr [esi], mm0

 movd dword ptr [edi], mm1

 emms

 }

}

void InsetNormalsBBoxDXT5_MMX(byte *minNormal, byte *maxNormal) {

 __asm {

 mov esi, minNormal

 mov edi, maxNormal

 movd mm0, dword ptr [esi]

 movd mm1, dword ptr [edi]

 punpcklbw mm0, SIMD_MMX_byte_0

 punpcklbw mm1, SIMD_MMX_byte_0

 movq mm2, mm1

 psubw mm2, mm0

 psubw mm2, SIMD_MMX_word_insetNormalDXT5Round

 pand mm2, SIMD_MMX_word_insetNormalDXT5Mask

 pmullw mm0, SIMD_MMX_word_insetNormalDXT5ShiftUp

 pmullw mm1, SIMD_MMX_word_insetNormalDXT5ShiftUp

 paddw mm0, mm2

 psubw mm1, mm2

 pmulhw mm0, SIMD_MMX_word_insetNormalDXT5ShiftDown

 pmulhw mm1, SIMD_MMX_word_insetNormalDXT5ShiftDown

 pmaxsw mm0, SIMD_MMX_word_0

 pmaxsw mm1, SIMD_MMX_word_0

 pand mm0, SIMD_MMX_word_insetNormalDXT5QuantMask

 pand mm1, SIMD_MMX_word_insetNormalDXT5QuantMask

 movq mm2, mm0

 movq mm3, mm1

 pmulhw mm2, SIMD_MMX_word_insetNormalDXT5Rep

 pmulhw mm3, SIMD_MMX_word_insetNormalDXT5Rep

 por mm0, mm2

 por mm1, mm3

 packuswb mm0, mm0

 packuswb mm1, mm1

 movd dword ptr [esi], mm0

 movd dword ptr [edi], mm1

 emms

 }

}

void InsetNormalsBBox3Dc_MMX(byte *minNormal, byte *maxNormal) {

 __asm {

 mov esi, minNormal

 mov edi, maxNormal

 movd mm0, dword ptr [esi]

 movd mm1, dword ptr [edi]

 punpcklbw mm0, SIMD_MMX_byte_0

 punpcklbw mm1, SIMD_MMX_byte_0

 movq mm2, mm1

 psubw mm2, mm0

 psubw mm2, SIMD_MMX_word_insetNormal3DcRound

 pand mm2, SIMD_MMX_word_insetNormal3DcMask

 pmullw mm0, SIMD_MMX_word_insetNormal3DcShiftUp

 pmullw mm1, SIMD_MMX_word_insetNormal3DcShiftUp

 paddw mm0, mm2

 psubw mm1, mm2

 pmulhw mm0, SIMD_MMX_word_insetNormal3DcShiftDown

 pmulhw mm1, SIMD_MMX_word_insetNormal3DcShiftDown

 pmaxsw mm0, SIMD_MMX_word_0

 pmaxsw mm1, SIMD_MMX_word_0

 packuswb mm0, mm0

 packuswb mm1, mm1

 movd dword ptr [esi], mm0

 movd dword ptr [edi], mm1

 emms

 }

}

void EmitAlphaIndices_MMX(const byte *block, const int channelBitOffset,

const int minAlpha, const int maxAlpha) {

 ALIGN16(byte alphaBlock[16]);

 ALIGN16(byte ab1[8]);

 ALIGN16(byte ab2[8]);

 ALIGN16(byte ab3[8]);

 ALIGN16(byte ab4[8]);

 ALIGN16(byte ab5[8]);

 ALIGN16(byte ab6[8]);

 ALIGN16(byte ab7[8]);

 __asm {

 movd mm7, channelBitOffset

 mov esi, block

 movq mm0, qword ptr [esi+ 0]

 movq mm5, qword ptr [esi+ 8]

 movq mm6, qword ptr [esi+16]

 movq mm4, qword ptr [esi+24]

 psrld mm0, mm7

 psrld mm5, mm7

 psrld mm6, mm7

 psrld mm4, mm7

 pand mm0, SIMD_MMX_dword_byte_mask

 pand mm5, SIMD_MMX_dword_byte_mask

 pand mm6, SIMD_MMX_dword_byte_mask

 pand mm4, SIMD_MMX_dword_byte_mask

 packuswb mm0, mm5

 packuswb mm6, mm4

 packuswb mm0, mm6

 movq alphaBlock+0, mm0

 movq mm0, qword ptr [esi+32]

 movq mm5, qword ptr [esi+40]

 movq mm6, qword ptr [esi+48]

 movq mm4, qword ptr [esi+56]

 psrld mm0, mm7

 psrld mm5, mm7

 psrld mm6, mm7

 psrld mm4, mm7

 pand mm0, SIMD_MMX_dword_byte_mask

 pand mm5, SIMD_MMX_dword_byte_mask

 pand mm6, SIMD_MMX_dword_byte_mask

 pand mm4, SIMD_MMX_dword_byte_mask

 packuswb mm0, mm5

 packuswb mm6, mm4

 packuswb mm0, mm6

 movq alphaBlock+8, mm0

 movd mm0, maxAlpha

 pshufw mm0, mm0, R_SHUFFLE_D(0, 0, 0, 0)

 movq mm1, mm0

 movd mm2, minAlpha

 pshufw mm2, mm2, R_SHUFFLE_D(0, 0, 0, 0)

 movq mm3, mm2

 movq mm4, mm0

 psubw mm4, mm2

 pmulhw mm4, SIMD_MMX_word_div_by_14

 movq mm5, mm0

 psubw mm5, mm4

 packuswb mm5, mm5

 movq ab1, mm5

 pmullw mm0, SIMD_MMX_word_scale654

 pmullw mm1, SIMD_MMX_word_scale123

 pmullw mm2, SIMD_MMX_word_scale123

 pmullw mm3, SIMD_MMX_word_scale654

 paddw mm0, mm2

 paddw mm1, mm3

 pmulhw mm0, SIMD_MMX_word_div_by_7

 pmulhw mm1, SIMD_MMX_word_div_by_7

 psubw mm0, mm4

 psubw mm1, mm4

 pshufw mm2, mm0, R_SHUFFLE_D(0, 0, 0, 0)

 pshufw mm3, mm0, R_SHUFFLE_D(1, 1, 1, 1)

 pshufw mm4, mm0, R_SHUFFLE_D(2, 2, 2, 2)

 packuswb mm2, mm2

 packuswb mm3, mm3

 packuswb mm4, mm4

 movq ab2, mm2

 movq ab3, mm3

 movq ab4, mm4

 pshufw mm2, mm1, R_SHUFFLE_D(2, 2, 2, 2)

 pshufw mm3, mm1, R_SHUFFLE_D(1, 1, 1, 1)

 pshufw mm4, mm1, R_SHUFFLE_D(0, 0, 0, 0)

 packuswb mm2, mm2

 packuswb mm3, mm3

 packuswb mm4, mm4

 movq ab5, mm2

 movq ab6, mm3

 movq ab7, mm4

 pshufw mm0, alphaBlock+0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm1, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm2, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm3, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pmaxub mm1, ab1

 pmaxub mm2, ab2

 pmaxub mm3, ab3

 pmaxub mm4, ab4

 pmaxub mm5, ab5

 pmaxub mm6, ab6

 pmaxub mm7, ab7

 pcmpeqb mm1, mm0

 pcmpeqb mm2, mm0

 pcmpeqb mm3, mm0

 pcmpeqb mm4, mm0

 pcmpeqb mm5, mm0

 pcmpeqb mm6, mm0

 pcmpeqb mm7, mm0

 pshufw mm0, SIMD_MMX_byte_8, R_SHUFFLE_D(0, 1, 2, 3)

 paddsb mm0, mm1

 paddsb mm2, mm3

 paddsb mm4, mm5

 paddsb mm6, mm7

 paddsb mm0, mm2

 paddsb mm4, mm6

 paddsb mm0, mm4

 pand mm0, SIMD_MMX_byte_7

 pshufw mm1, SIMD_MMX_byte_2, R_SHUFFLE_D(0, 1, 2, 3)

 pcmpgtb mm1, mm0

 pand mm1, SIMD_MMX_byte_1

 pxor mm0, mm1

 pshufw mm1, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm2, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm3, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 psrlq mm1, 8- 3

 psrlq mm2, 16- 6

 psrlq mm3, 24- 9

 psrlq mm4, 32-12

 psrlq mm5, 40-15

 psrlq mm6, 48-18

 psrlq mm7, 56-21

 pand mm0, SIMD_MMX_dword_alpha_bit_mask0

 pand mm1, SIMD_MMX_dword_alpha_bit_mask1

 pand mm2, SIMD_MMX_dword_alpha_bit_mask2

 pand mm3, SIMD_MMX_dword_alpha_bit_mask3

 pand mm4, SIMD_MMX_dword_alpha_bit_mask4

 pand mm5, SIMD_MMX_dword_alpha_bit_mask5

 pand mm6, SIMD_MMX_dword_alpha_bit_mask6

 pand mm7, SIMD_MMX_dword_alpha_bit_mask7

 por mm0, mm1

 por mm2, mm3

 por mm4, mm5

 por mm6, mm7

 por mm0, mm2

 por mm4, mm6

 por mm0, mm4

 mov esi, globalOutData

 movd [esi+0], mm0

 pshufw mm0, alphaBlock+8, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm1, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm2, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm3, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pmaxub mm1, ab1

 pmaxub mm2, ab2

 pmaxub mm3, ab3

 pmaxub mm4, ab4

 pmaxub mm5, ab5

 pmaxub mm6, ab6

 pmaxub mm7, ab7

 pcmpeqb mm1, mm0

 pcmpeqb mm2, mm0

 pcmpeqb mm3, mm0

 pcmpeqb mm4, mm0

 pcmpeqb mm5, mm0

 pcmpeqb mm6, mm0

 pcmpeqb mm7, mm0

 pshufw mm0, SIMD_MMX_byte_8, R_SHUFFLE_D(0, 1, 2, 3)

 paddsb mm0, mm1

 paddsb mm2, mm3

 paddsb mm4, mm5

 paddsb mm6, mm7

 paddsb mm0, mm2

 paddsb mm4, mm6

 paddsb mm0, mm4

 pand mm0, SIMD_MMX_byte_7

 pshufw mm1, SIMD_MMX_byte_2, R_SHUFFLE_D(0, 1, 2, 3)

 pcmpgtb mm1, mm0

 pand mm1, SIMD_MMX_byte_1

 pxor mm0, mm1

 pshufw mm1, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm2, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm3, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 psrlq mm1, 8- 3

 psrlq mm2, 16- 6

 psrlq mm3, 24- 9

 psrlq mm4, 32-12

 psrlq mm5, 40-15

 psrlq mm6, 48-18

 psrlq mm7, 56-21

 pand mm0, SIMD_MMX_dword_alpha_bit_mask0

 pand mm1, SIMD_MMX_dword_alpha_bit_mask1

 pand mm2, SIMD_MMX_dword_alpha_bit_mask2

 pand mm3, SIMD_MMX_dword_alpha_bit_mask3

 pand mm4, SIMD_MMX_dword_alpha_bit_mask4

 pand mm5, SIMD_MMX_dword_alpha_bit_mask5

 pand mm6, SIMD_MMX_dword_alpha_bit_mask6

 pand mm7, SIMD_MMX_dword_alpha_bit_mask7

 por mm0, mm1

 por mm2, mm3

 por mm4, mm5

 por mm6, mm7

 por mm0, mm2

 por mm4, mm6

 por mm0, mm4

 movd dword ptr [esi+3], mm0

 emms

 }

 globalOutData += 6;

}

void EmitGreenIndices_MMX(const byte *block, const int channelBitOffset,

const int minGreen, const int maxGreen) {

 ALIGN16(byte greenBlock[16]);

 __asm {

 movd mm7, channelBitOffset

 mov esi, block

 movq mm0, qword ptr [esi+ 0]

 movq mm5, qword ptr [esi+ 8]

 movq mm6, qword ptr [esi+16]

 movq mm4, qword ptr [esi+24]

 psrld mm0, mm7

 psrld mm5, mm7

 psrld mm6, mm7

 psrld mm4, mm7

 pand mm0, SIMD_MMX_dword_byte_mask

 pand mm5, SIMD_MMX_dword_byte_mask

 pand mm6, SIMD_MMX_dword_byte_mask

 pand mm4, SIMD_MMX_dword_byte_mask

 packuswb mm0, mm5

 packuswb mm6, mm4

 packuswb mm0, mm6

 movq greenBlock+0, mm0

 movq mm0, qword ptr [esi+32]

 movq mm5, qword ptr [esi+40]

 movq mm6, qword ptr [esi+48]

 movq mm4, qword ptr [esi+56]

 psrld mm0, mm7

 psrld mm5, mm7

 psrld mm6, mm7

 psrld mm4, mm7

 pand mm0, SIMD_MMX_dword_byte_mask

 pand mm5, SIMD_MMX_dword_byte_mask

 pand mm6, SIMD_MMX_dword_byte_mask

 pand mm4, SIMD_MMX_dword_byte_mask

 packuswb mm0, mm5

 packuswb mm6, mm4

 packuswb mm0, mm6

 movq greenBlock+8, mm0

 movd mm2, maxGreen

 pshufw mm2, mm2, R_SHUFFLE_D(0, 0, 0, 0)

 movq mm1, mm2

 movd mm3, minGreen

 pshufw mm3, mm3, R_SHUFFLE_D(0, 0, 0, 0)

 movq mm4, mm2

 psubw mm4, mm3

 pmulhw mm4, SIMD_MMX_word_div_by_6

 psllw mm2, 1

 paddw mm2, mm3

 pmulhw mm2, SIMD_MMX_word_div_by_3

 psubw mm2, mm4

 packuswb mm2, mm2 // gb2

 psllw mm3, 1

 paddw mm3, mm1

 pmulhw mm3, SIMD_MMX_word_div_by_3

 psubw mm3, mm4

 packuswb mm3, mm3 // gb3

 psubw mm1, mm4

 packuswb mm1, mm1 // gb1

 pshufw mm0, greenBlock+0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pmaxub mm5, mm1

 pmaxub mm6, mm2

 pmaxub mm7, mm3

 pcmpeqb mm5, mm0

 pcmpeqb mm6, mm0

 pcmpeqb mm7, mm0

 pshufw mm0, SIMD_MMX_byte_4, R_SHUFFLE_D(0, 1, 2, 3)

 paddsb mm0, mm5

 paddsb mm6, mm7

 paddsb mm0, mm6

 pand mm0, SIMD_MMX_byte_3

 pshufw mm4, SIMD_MMX_byte_2, R_SHUFFLE_D(0, 1, 2, 3)

 pcmpgtb mm4, mm0

 pand mm4, SIMD_MMX_byte_1

 pxor mm0, mm4

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 psrlq mm4, 8- 2

 psrlq mm5, 16- 4

 psrlq mm6, 24- 6

 psrlq mm7, 32- 8

 pand mm4, SIMD_MMX_dword_color_bit_mask1

 pand mm5, SIMD_MMX_dword_color_bit_mask2

 pand mm6, SIMD_MMX_dword_color_bit_mask3

 pand mm7, SIMD_MMX_dword_color_bit_mask4

 por mm5, mm4

 por mm7, mm6

 por mm7, mm5

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 psrlq mm4, 40-10

 psrlq mm5, 48-12

 psrlq mm6, 56-14

 pand mm0, SIMD_MMX_dword_color_bit_mask0

 pand mm4, SIMD_MMX_dword_color_bit_mask5

 pand mm5, SIMD_MMX_dword_color_bit_mask6

 pand mm6, SIMD_MMX_dword_color_bit_mask7

 por mm4, mm5

 por mm0, mm6

 por mm7, mm4

 por mm7, mm0

 mov esi, gobalOutPtr

 movd [esi+0], mm7

 pshufw mm0, greenBlock+8, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pmaxub mm5, mm1

 pmaxub mm6, mm2

 pmaxub mm7, mm3

 pcmpeqb mm5, mm0

 pcmpeqb mm6, mm0

 pcmpeqb mm7, mm0

 pshufw mm0, SIMD_MMX_byte_4, R_SHUFFLE_D(0, 1, 2, 3)

 paddsb mm0, mm5

 paddsb mm6, mm7

 paddsb mm0, mm6

 pand mm0, SIMD_MMX_byte_3

 pshufw mm4, SIMD_MMX_byte_2, R_SHUFFLE_D(0, 1, 2, 3)

 pcmpgtb mm4, mm0

 pand mm4, SIMD_MMX_byte_1

 pxor mm0, mm4

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm7, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 psrlq mm4, 8- 2

 psrlq mm5, 16- 4

 psrlq mm6, 24- 6

 psrlq mm7, 32- 8

 pand mm4, SIMD_MMX_dword_color_bit_mask1

 pand mm5, SIMD_MMX_dword_color_bit_mask2

 pand mm6, SIMD_MMX_dword_color_bit_mask3

 pand mm7, SIMD_MMX_dword_color_bit_mask4

 por mm5, mm4

 por mm7, mm6

 por mm7, mm5

 pshufw mm4, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm5, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 pshufw mm6, mm0, R_SHUFFLE_D(0, 1, 2, 3)

 psrlq mm4, 40-10

 psrlq mm5, 48-12

 psrlq mm6, 56-14

 pand mm0, SIMD_MMX_dword_color_bit_mask0

 pand mm4, SIMD_MMX_dword_color_bit_mask5

 pand mm5, SIMD_MMX_dword_color_bit_mask6

 pand mm6, SIMD_MMX_dword_color_bit_mask7

 por mm4, mm5

 por mm0, mm6

 por mm7, mm4

 por mm7, mm0

 movd [esi+2], mm7

 emms

 }

 globalOutData += 4;

}

void CompressNormalMapDXT5_MMX(const byte *inBuf, byte *outBuf, int width,

int height, int &outputBytes) {

 ALIGN16(byte block[64]);

 ALIGN16(byte normalMin[4]);

 ALIGN16(byte normalMax[4]);

 globalOutData = outBuf;

 for (int j = 0; j < height; j += 4, inBuf += width * 4*4) {

 for (int i = 0; i < width; i += 4) {

 ExtractBlock_MMX(inBuf + i * 4, width, block);

 GetMinMaxNormalsBBox_MMX(block, normalMin, normalMax);

 InsetNormalsBBoxDXT5_MMX(normalMin, normalMax);

 // Write out Nx into alpha channel.

 EmitByte(normalMax[0]);

 EmitByte(normalMin[0]);

 EmitAlphaIndices_MMX(block, 0*8, normalMin[0], normalMax[0]);

 // Write out Ny into green channel.

 EmitUShort(NormalYTo565(normalMax[1]));

 EmitUShort(NormalYTo565(normalMin[1]));

 EmitGreenIndices_MMX(block, 1*8, normalMin[1], normalMax[1]);

 }

 }

 outputBytes = outData - outBuf;

}

void CompressNormalMap3Dc_MMX(const byte *inBuf, byte *outBuf, int width,

int height, int &outputBytes) {

 ALIGN16(byte block[64]);

 ALIGN16(byte normalMin[4]);

 ALIGN16(byte normalMax[4]);

 globalOutData = outBuf;

 for (int j = 0; j < height; j += 4, inBuf += width * 4*4) {

 for (int i = 0; i < width; i += 4) {

 ExtractBlock_MMX(inBuf + i * 4, width, block);

 GetMinMaxNormalsBBox_MMX(block, normalMin, normalMax);

 InsetNormalsBBox3Dc_MMX(normalMin, normalMax);

 // Write out Nx as an alpha channel.

 EmitByte(normalMax[0]);

 EmitByte(normalMin[0]);

 EmitAlphaIndices_MMX(block, 0*8, normalMin[0], normalMax[0]);

 // Write out Ny as an alpha channel.

 EmitByte(normalMax[1]);

 EmitByte(normalMin[1]);

 EmitAlphaIndices_MMX(block, 1*8, normalMin[1], normalMax[1]);

 }

 }

 outputBytes = outData - outBuf;

}

Appendix C

/*

 Real-Time Normal Map Compression (SSE2)

 Copyright (C) 2008 Id Software, Inc.

 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or

 modify it under the terms of the GNU Lesser General Public

 License as published by the Free Software Foundation; either

 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 Lesser General Public License for more details.

*/

#define ALIGN16(x) __declspec(align(16)) x

#define R_SHUFFLE_D(x, y, z, w) (((w) & 3) << 6 | ((z) & 3) << 4 | (

(y) & 3) << 2 | ((x) & 3))

ALIGN16(static dword SIMD_SSE2_dword_byte_mask[4]) = { 0x000000FF,

0x000000FF, 0x000000FF, 0x000000FF };

ALIGN16(static dword SIMD_SSE2_dword_alpha_bit_mask0[4]) = {

7<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< INSET_ALPHA_SHIFT, 1 <<

INSET_COLOR_SHIFT, 1, 1, 1, 1, 1, 1 };

ALIGN16(static word SIMD_SSE2_word_insetNormalDXT5ShiftDown[8]) = { 1 << (

16 - INSET_ALPHA_SHIFT), 1 << (16 - INSET_COLOR_SHIFT), 0, 0, 0, 0, 0, 0

};

ALIGN16(static word SIMD_SSE2_word_insetNormalDXT5QuantMask[8]) = { 0xFF,

C565_6_MASK, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };

ALIGN16(static word SIMD_SSE2_word_insetNormalDXT5Rep[8]) = { 0, 1 << (16

- 6), 0, 0, 0, 0, 0, 0 };

ALIGN16(static word SIMD_SSE2_word_insetNormal3DcRound[8]) = { ((1<<<<

INSET_ALPHA_SHIFT, 1 << INSET_ALPHA_SHIFT, 1, 1, 1, 1, 1, 1 };

ALIGN16(static word SIMD_SSE2_word_insetNormal3DcShiftDown[8]) = { 1 << (

16 - INSET_ALPHA_SHIFT), 1 << (16 - INSET_ALPHA_SHIFT), 0, 0, 0, 0, 0, 0

};

ALIGN16(static byte SIMD_SSE2_byte_0[16]) = { 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

ALIGN16(static byte SIMD_SSE2_byte_1[16]) = { 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 };

ALIGN16(static byte SIMD_SSE2_byte_2[16]) = { 0x02, 0x02, 0x02, 0x02, 0x02,

0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02 };

ALIGN16(static byte SIMD_SSE2_byte_7[16]) = { 0x07, 0x07, 0x07, 0x07, 0x07,

0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07 };

void ExtractBlock_SSE2(const byte *inPtr, int width, byte *block) {

 __asm {

 mov esi, inPtr

 mov edi, block

 mov eax, width

 shl eax, 2

 movdqa xmm0, [esi]

 movdqa xmmword ptr [edi+ 0], xmm0

 movdqa xmm1, xmmword ptr [esi+eax]

 movdqa xmmword ptr [edi+16], xmm1

 movdqa xmm2, xmmword ptr [esi+eax*2]

 add esi, eax

 movdqa xmmword ptr [edi+32], xmm2

 movdqa xmm3, xmmword ptr [esi+eax*2]

 movdqa xmmword ptr [edi+48], xmm3

 }

}

void GetMinMaxNormalsBBox_SSE2(const byte *block, byte *minNormal, byte

*maxNormal) {

 __asm {

 mov eax, block

 mov esi, minNormal

 mov edi, maxNormal

 movdqa xmm0, xmmword ptr [eax+ 0]

 movdqa xmm1, xmmword ptr [eax+ 0]

 pminub xmm0, xmmword ptr [eax+16]

 pmaxub xmm1, xmmword ptr [eax+16]

 pminub xmm0, xmmword ptr [eax+32]

 pmaxub xmm1, xmmword ptr [eax+32]

 pminub xmm0, xmmword ptr [eax+48]

 pmaxub xmm1, xmmword ptr [eax+48]

 pshufd xmm3, xmm0, R_SHUFFLE_D(2, 3, 2, 3)

 pshufd xmm4, xmm1, R_SHUFFLE_D(2, 3, 2, 3)

 pminub xmm0, xmm3

 pmaxub xmm1, xmm4

 pshuflw xmm6, xmm0, R_SHUFFLE_D(2, 3, 2, 3)

 pshuflw xmm7, xmm1, R_SHUFFLE_D(2, 3, 2, 3)

 pminub xmm0, xmm6

 pmaxub xmm1, xmm7

 movd dword ptr [esi], xmm0

 movd dword ptr [edi], xmm1

 }

}

void InsetNormalsBBoxDXT5_SSE2(byte *minNormal, byte *maxNormal) {

 __asm {

 mov esi, minNormal

 mov edi, maxNormal

 movd xmm0, dword ptr [esi]

 movd xmm1, dword ptr [edi]

 punpcklbw xmm0, SIMD_SSE2_byte_0

 punpcklbw xmm1, SIMD_SSE2_byte_0

 movdqa xmm2, xmm1

 psubw xmm2, xmm0

 psubw xmm2, SIMD_SSE2_word_insetNormalDXT5Round

 pand xmm2, SIMD_SSE2_word_insetNormalDXT5Mask

 pmullw xmm0, SIMD_SSE2_word_insetNormalDXT5ShiftUp

 pmullw xmm1, SIMD_SSE2_word_insetNormalDXT5ShiftUp

 paddw xmm0, xmm2

 psubw xmm1, xmm2

 pmulhw xmm0, SIMD_SSE2_word_insetNormalDXT5ShiftDown

 pmulhw xmm1, SIMD_SSE2_word_insetNormalDXT5ShiftDown

 pmaxsw xmm0, SIMD_SSE2_word_0

 pmaxsw xmm1, SIMD_SSE2_word_0

 pand xmm0, SIMD_SSE2_word_insetNormalDXT5QuantMask

 pand xmm1, SIMD_SSE2_word_insetNormalDXT5QuantMask

 movdqa xmm2, xmm0

 movdqa xmm3, xmm1

 pmulhw xmm2, SIMD_SSE2_word_insetNormalDXT5Rep

 pmulhw xmm3, SIMD_SSE2_word_insetNormalDXT5Rep

 por xmm0, xmm2

 por xmm1, xmm3

 packuswb xmm0, xmm0

 packuswb xmm1, xmm1

 movd dword ptr [esi], xmm0

 movd dword ptr [edi], xmm1

 }

}

void InsetNormalsBBox3Dc_SSE2(byte *minNormal, byte *maxNormal) {

 __asm {

 mov esi, minNormal

 mov edi, maxNormal

 movd xmm0, dword ptr [esi]

 movd xmm1, dword ptr [edi]

 punpcklbw xmm0, SIMD_SSE2_byte_0

 punpcklbw xmm1, SIMD_SSE2_byte_0

 movdqa xmm2, xmm1

 psubw xmm2, xmm0

 psubw xmm2, SIMD_SSE2_word_insetNormal3DcRound

 pand xmm2, SIMD_SSE2_word_insetNormal3DcMask

 pmullw xmm0, SIMD_SSE2_word_insetNormal3DcShiftUp

 pmullw xmm1, SIMD_SSE2_word_insetNormal3DcShiftUp

 paddw xmm0, xmm2

 psubw xmm1, xmm2

 pmulhw xmm0, SIMD_SSE2_word_insetNormal3DcShiftDown

 pmulhw xmm1, SIMD_SSE2_word_insetNormal3DcShiftDown

 pmaxsw xmm0, SIMD_SSE2_word_0

 pmaxsw xmm1, SIMD_SSE2_word_0

 packuswb xmm0, xmm0

 packuswb xmm1, xmm1

 movd dword ptr [esi], xmm0

 movd dword ptr [edi], xmm1

 }

}

void EmitAlphaIndices_SSE2(const byte *block, const int channelBitOffset,

const int minAlpha, const int maxAlpha) {

 __asm {

 movd xmm7, channelBitOffset

 mov esi, block

 movdqa xmm0, xmmword ptr [esi+ 0]

 movdqa xmm5, xmmword ptr [esi+16]

 movdqa xmm6, xmmword ptr [esi+32]

 movdqa xmm4, xmmword ptr [esi+48]

 psrld xmm0, xmm7

 psrld xmm5, xmm7

 psrld xmm6, xmm7

 psrld xmm4, xmm7

 pand xmm0, SIMD_SSE2_dword_byte_mask

 pand xmm5, SIMD_SSE2_dword_byte_mask

 pand xmm6, SIMD_SSE2_dword_byte_mask

 pand xmm4, SIMD_SSE2_dword_byte_mask

 packuswb xmm0, xmm5

 packuswb xmm6, xmm4

 movd xmm5, maxAlpha

 pshuflw xmm5, xmm5, R_SHUFFLE_D(0, 0, 0, 0)

 pshufd xmm5, xmm5, R_SHUFFLE_D(0, 0, 0, 0)

 movdqa xmm7, xmm5

 movd xmm2, minAlpha

 pshuflw xmm2, xmm2, R_SHUFFLE_D(0, 0, 0, 0)

 pshufd xmm2, xmm2, R_SHUFFLE_D(0, 0, 0, 0)

 movdqa xmm3, xmm2

 movdqa xmm4, xmm5

 psubw xmm4, xmm2

 pmulhw xmm4, SIMD_SSE2_word_div_by_14

 movdqa xmm1, xmm5

 psubw xmm1, xmm4

 packuswb xmm1, xmm1 // ab1

 pmullw xmm5, SIMD_SSE2_word_scale66554400

 pmullw xmm7, SIMD_SSE2_word_scale11223300

 pmullw xmm2, SIMD_SSE2_word_scale11223300

 pmullw xmm3, SIMD_SSE2_word_scale66554400

 paddw xmm5, xmm2

 paddw xmm7, xmm3

 pmulhw xmm5, SIMD_SSE2_word_div_by_7

 pmulhw xmm7, SIMD_SSE2_word_div_by_7

 psubw xmm5, xmm4

 psubw xmm7, xmm4

 pshufd xmm2, xmm5, R_SHUFFLE_D(0, 0, 0, 0)

 pshufd xmm3, xmm5, R_SHUFFLE_D(1, 1, 1, 1)

 pshufd xmm4, xmm5, R_SHUFFLE_D(2, 2, 2, 2)

 packuswb xmm2, xmm2 // ab2

 packuswb xmm3, xmm3 // ab3

 packuswb xmm4, xmm4 // ab4

 packuswb xmm0, xmm6

 pshufd xmm5, xmm7, R_SHUFFLE_D(2, 2, 2, 2)

 pshufd xmm6, xmm7, R_SHUFFLE_D(1, 1, 1, 1)

 pshufd xmm7, xmm7, R_SHUFFLE_D(0, 0, 0, 0)

 packuswb xmm5, xmm5 // ab5

 packuswb xmm6, xmm6 // ab6

 packuswb xmm7, xmm7 // ab7

 pmaxub xmm1, xmm0

 pmaxub xmm2, xmm0

 pmaxub xmm3, xmm0

 pcmpeqb xmm1, xmm0

 pcmpeqb xmm2, xmm0

 pcmpeqb xmm3, xmm0

 pmaxub xmm4, xmm0

 pmaxub xmm5, xmm0

 pmaxub xmm6, xmm0

 pmaxub xmm7, xmm0

 pcmpeqb xmm4, xmm0

 pcmpeqb xmm5, xmm0

 pcmpeqb xmm6, xmm0

 pcmpeqb xmm7, xmm0

 movdqa xmm0, SIMD_SSE2_byte_8

 paddsb xmm0, xmm1

 paddsb xmm2, xmm3

 paddsb xmm4, xmm5

 paddsb xmm6, xmm7

 paddsb xmm0, xmm2

 paddsb xmm4, xmm6

 paddsb xmm0, xmm4

 pand xmm0, SIMD_SSE2_byte_7

 movdqa xmm1, SIMD_SSE2_byte_2

 pcmpgtb xmm1, xmm0

 pand xmm1, SIMD_SSE2_byte_1

 pxor xmm0, xmm1

 movdqa xmm1, xmm0

 movdqa xmm2, xmm0

 movdqa xmm3, xmm0

 movdqa xmm4, xmm0

 movdqa xmm5, xmm0

 movdqa xmm6, xmm0

 movdqa xmm7, xmm0

 psrlq xmm1, 8- 3

 psrlq xmm2, 16- 6

 psrlq xmm3, 24- 9

 psrlq xmm4, 32-12

 psrlq xmm5, 40-15

 psrlq xmm6, 48-18

 psrlq xmm7, 56-21

 pand xmm0, SIMD_SSE2_dword_alpha_bit_mask0

 pand xmm1, SIMD_SSE2_dword_alpha_bit_mask1

 pand xmm2, SIMD_SSE2_dword_alpha_bit_mask2

 pand xmm3, SIMD_SSE2_dword_alpha_bit_mask3

 pand xmm4, SIMD_SSE2_dword_alpha_bit_mask4

 pand xmm5, SIMD_SSE2_dword_alpha_bit_mask5

 pand xmm6, SIMD_SSE2_dword_alpha_bit_mask6

 pand xmm7, SIMD_SSE2_dword_alpha_bit_mask7

 por xmm0, xmm1

 por xmm2, xmm3

 por xmm4, xmm5

 por xmm6, xmm7

 por xmm0, xmm2

 por xmm4, xmm6

 por xmm0, xmm4

 mov esi, globalOutData

 movd [esi+0], xmm0

 pshufd xmm1, xmm0, R_SHUFFLE_D(2, 3, 0, 1)

 movd [esi+3], xmm1

 }

 globalOutData += 6;

}

void EmitGreenIndices_SSE2(const byte *block, const int channelBitOffset,

const int minGreen, const int maxGreen) {

 __asm {

 movd xmm7, channelBitOffset

 mov esi, block

 movdqa xmm0, xmmword ptr [esi+ 0]

 movdqa xmm5, xmmword ptr [esi+16]

 movdqa xmm6, xmmword ptr [esi+32]

 movdqa xmm4, xmmword ptr [esi+48]

 psrld xmm0, xmm7

 psrld xmm5, xmm7

 psrld xmm6, xmm7

 psrld xmm4, xmm7

 pand xmm0, SIMD_SSE2_dword_byte_mask

 pand xmm5, SIMD_SSE2_dword_byte_mask

 pand xmm6, SIMD_SSE2_dword_byte_mask

 pand xmm4, SIMD_SSE2_dword_byte_mask

 packuswb xmm0, xmm5

 packuswb xmm6, xmm4

 movd xmm2, maxGreen

 pshuflw xmm2, xmm2, R_SHUFFLE_D(0, 0, 0, 0)

 pshufd xmm2, xmm2, R_SHUFFLE_D(0, 0, 0, 0)

 movdqa xmm1, xmm2

 movd xmm3, minGreen

 pshuflw xmm3, xmm3, R_SHUFFLE_D(0, 0, 0, 0)

 pshufd xmm3, xmm3, R_SHUFFLE_D(0, 0, 0, 0)

 movdqa xmm4, xmm2

 psubw xmm4, xmm3

 pmulhw xmm4, SIMD_SSE2_word_div_by_6

 psllw xmm2, 1

 paddw xmm2, xmm3

 pmulhw xmm2, SIMD_SSE2_word_div_by_3

 psubw xmm2, xmm4

 packuswb xmm2, xmm2 // gb2

 psllw xmm3, 1

 paddw xmm3, xmm1

 pmulhw xmm3, SIMD_SSE2_word_div_by_3

 psubw xmm3, xmm4

 packuswb xmm3, xmm3 // gb3

 psubw xmm1, xmm4

 packuswb xmm1, xmm1 // gb1

 packuswb xmm0, xmm6

 pmaxub xmm1, xmm0

 pmaxub xmm2, xmm0

 pmaxub xmm3, xmm0

 pcmpeqb xmm1, xmm0

 pcmpeqb xmm2, xmm0

 pcmpeqb xmm3, xmm0

 movdqa xmm0, SIMD_SSE2_byte_4

 paddsb xmm0, xmm1

 paddsb xmm2, xmm3

 paddsb xmm0, xmm2

 pand xmm0, SIMD_SSE2_byte_3

 movdqa xmm4, SIMD_SSE2_byte_2

 pcmpgtb xmm4, xmm0

 pand xmm4, SIMD_SSE2_byte_1

 pxor xmm0, xmm4

 movdqa xmm4, xmm0

 movdqa xmm5, xmm0

 movdqa xmm6, xmm0

 movdqa xmm7, xmm0

 psrlq xmm4, 8- 2

 psrlq xmm5, 16- 4

 psrlq xmm6, 24- 6

 psrlq xmm7, 32- 8

 pand xmm4, SIMD_SSE2_dword_color_bit_mask1

 pand xmm5, SIMD_SSE2_dword_color_bit_mask2

 pand xmm6, SIMD_SSE2_dword_color_bit_mask3

 pand xmm7, SIMD_SSE2_dword_color_bit_mask4

 por xmm5, xmm4

 por xmm7, xmm6

 por xmm7, xmm5

 movdqa xmm4, xmm0

 movdqa xmm5, xmm0

 movdqa xmm6, xmm0

 psrlq xmm4, 40-10

 psrlq xmm5, 48-12

 psrlq xmm6, 56-14

 pand xmm0, SIMD_SSE2_dword_color_bit_mask0

 pand xmm4, SIMD_SSE2_dword_color_bit_mask5

 pand xmm5, SIMD_SSE2_dword_color_bit_mask6

 pand xmm6, SIMD_SSE2_dword_color_bit_mask7

 por xmm4, xmm5

 por xmm0, xmm6

 por xmm7, xmm4

 por xmm7, xmm0

 mov esi, globalOutData

 movd [esi+0], xmm7

 pshufd xmm6, xmm7, R_SHUFFLE_D(2, 3, 0, 1)

 movd [esi+2], xmm6

 }

 globalOutData += 4;

}

bool CompressNormalMapDXT5_SSE2(const byte *inBuf, byte *outBuf, int width,

int height, int &outputBytes) {

 ALIGN16(byte block[64]);

 ALIGN16(byte normalMin[4]);

 ALIGN16(byte normalMax[4]);

 globalOutData = outBuf;

 for (int j = 0; j < height; j += 4, inBuf += width * 4*4) {

 for (int i = 0; i < width; i += 4) {

 ExtractBlock_SSE2(inBuf + i * 4, width, block);

 GetMinMaxNormalsBBox_SSE2(block, normalMin, normalMax);

 InsetNormalsBBoxDXT5_SSE2(normalMin, normalMax);

 // Write out Nx into alpha channel.

 EmitByte(normalMax[0]);

 EmitByte(normalMin[0]);

 EmitAlphaIndices_SSE2(block, 0*8, normalMin[0], normalMax[0]);

 // Write out Ny into green channel.

 EmitUShort(NormalYTo565(normalMax[1]));

 EmitUShort(NormalYTo565(normalMin[1]));

 EmitGreenIndices_SSE2(block, 1*8, normalMin[1], normalMax[1]);

 }

 }

 outputBytes = outData - outBuf;

}

void CompressNormalMap3Dc_SSE2(const byte *inBuf, byte *outBuf, int width,

int height, int &outputBytes) {

 ALIGN16(byte block[64]);

 ALIGN16(byte normalMin[4]);

 ALIGN16(byte normalMax[4]);

 globalOutData = outBuf;

 for (int j = 0; j < height; j += 4, inBuf += width * 4*4) {

 for (int i = 0; i < width; i += 4) {

 ExtractBlock_SSE2(inBuf + i * 4, width, block);

 GetMinMaxNormalsBBox_SSE2(block, normalMin, normalMax);

 InsetNormalsBBox3Dc_SSE2(normalMin, normalMax);

 // Write out Nx as an alpha channel.

 EmitByte(normalMax[0]);

 EmitByte(normalMin[0]);

 EmitAlphaIndices_SSE2(block, 0*8, normalMin[0], normalMax[0]);

 // Write out Ny as an alpha channel.

 EmitByte(normalMax[1]);

 EmitByte(normalMin[1]);

 EmitAlphaIndices_SSE2(block, 1*8, normalMin[1], normalMax[1]);

 }

 }

 outputBytes = outData - outBuf;

}

Appendix D

/*

 Real-time DXT1 & YCoCg DXT5 compression (Cg 2.0)

 Copyright (c) NVIDIA Corporation.

 Written by: Ignacio Castano

 Thanks to JMP van Waveren, Simon Green, Eric Werness, Simon Brown

 Permission is hereby granted, free of charge, to any person

 obtaining a copy of this software and associated documentation

 files (the "Software"), to deal in the Software without

 restriction, including without limitation the rights to use,

 copy, modify, merge, publish, distribute, sublicense, and/or sell

 copies of the Software, and to permit persons to whom the

 Software is furnished to do so, subject to the following

 conditions:

 The above copyright notice and this permission notice shall be

 included in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

 OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

 OTHER DEALINGS IN THE SOFTWARE.

*/

// vertex program

void compress_vp(float4 pos : POSITION,

 float2 texcoord : TEXCOORD0,

 out float4 hpos : POSITION,

 out float2 o_texcoord : TEXCOORD0

)

{

 o_texcoord = texcoord;

 hpos = pos;

}

typedef unsigned int uint;

typedef unsigned int2 uint2;

typedef unsigned int4 uint4;

void ExtractColorBlockXY(out float2 col[16], sampler2D image, float2

texcoord, float2 imageSize)

{

#if 0

 float2 texelSize = (1.0f / imageSize);

 texcoord -= texelSize * 2;

 for (int i = 0; i < 4; i++) {

 for (int j = 0; j < 4; j++) {

 col[i*4+j] = tex2D(image, texcoord + float2(j, i) *

texelSize).rg;

 }

 }

#else

 // use TXF instruction (integer coordinates with offset)

 // note offsets must be constant

 //int4 base = int4(wpos*4-2, 0, 0);

 int4 base = int4(texcoord * imageSize - 1.5, 0, 0);

 col[0] = tex2Dfetch(image, base, int2(0, 0)).rg;

 col[1] = tex2Dfetch(image, base, int2(1, 0)).rg;

 col[2] = tex2Dfetch(image, base, int2(2, 0)).rg;

 col[3] = tex2Dfetch(image, base, int2(3, 0)).rg;

 col[4] = tex2Dfetch(image, base, int2(0, 1)).rg;

 col[5] = tex2Dfetch(image, base, int2(1, 1)).rg;

 col[6] = tex2Dfetch(image, base, int2(2, 1)).rg;

 col[7] = tex2Dfetch(image, base, int2(3, 1)).rg;

 col[8] = tex2Dfetch(image, base, int2(0, 2)).rg;

 col[9] = tex2Dfetch(image, base, int2(1, 2)).rg;

 col[10] = tex2Dfetch(image, base, int2(2, 2)).rg;

 col[11] = tex2Dfetch(image, base, int2(3, 2)).rg;

 col[12] = tex2Dfetch(image, base, int2(0, 3)).rg;

 col[13] = tex2Dfetch(image, base, int2(1, 3)).rg;

 col[14] = tex2Dfetch(image, base, int2(2, 3)).rg;

 col[15] = tex2Dfetch(image, base, int2(3, 3)).rg;

#endif

}

// find minimum and maximum colors based on bounding box in color space

void FindMinMaxColorsBox(float2 block[16], out float2 mincol, out float2

maxcol)

{

 mincol = block[0];

 maxcol = block[0];

 for (int i = 1; i < 16; i++) {

 mincol = min(mincol, block[i]);

 maxcol = max(maxcol, block[i]);

 }

}

void InsetNormalsBBoxDXT5(in out float2 mincol, in out float2 maxcol)

{

 float2 inset;

 inset.x = (maxcol.x - mincol.x) / 32.0 - (16.0 / 255.0) / 32.0; //

ALPHA scale-bias.

 inset.y = (maxcol.y - mincol.y) / 16.0 - (8.0 / 255.0) / 16; //

GREEN scale-bias.

 mincol = saturate(mincol + inset);

 maxcol = saturate(maxcol - inset);

}

void InsetNormalsBBoxLATC(in out float2 mincol, in out float2 maxcol)

{

 float2 inset = (maxcol - mincol) / 32.0 - (16.0 / 255.0) / 32.0; //

ALPHA scale-bias.

 mincol = saturate(mincol + inset);

 maxcol = saturate(maxcol - inset);

}

uint EmitGreenEndPoints(in out float ming, in out float maxg)

{

 uint c0 = round(ming * 63);

 uint c1 = round(maxg * 63);

 ming = float((c0 << 2) | (c0 >> 4)) * (1.0 / 255.0);

 maxg = float((c1 << 2) | (c1 >> 4)) * (1.0 / 255.0);

 return (c0 << 21) | (c1 << 5);

}

#if 1

uint EmitGreenIndices(float2 block[16], float minGreen, float maxGreen)

{

 const int GREEN_RANGE = 3;

 float bias = maxGreen + (maxGreen - minGreen) / (2.0 * GREEN_RANGE);

 float scale = 1.0f / (maxGreen - minGreen);

 // Compute indices

 uint indices = 0;

 for (int i = 0; i < 16; i++)

 {

 uint index = saturate((bias - block[i].y) * scale) * GREEN_RANGE;

 indices |= index << (i * 2);

 }

 uint i0 = (indices & 0x55555555);

 uint i1 = (indices & 0xAAAAAAAA) >> 1;

 indices = ((i0 ^ i1) << 1) | i1;

 // Output indices

 return indices;

}

#else

uint EmitGreenIndices(float2 block[16], float minGreen, float maxGreen)

{

 const int GREEN_RANGE = 3;

 float mid = (maxGreen - minGreen) / (2 * GREEN_RANGE);

 float yb1 = minGreen + mid;

 float yb2 = (2 * maxGreen + 1 * minGreen) / GREEN_RANGE + mid;

 float yb3 = (1 * maxGreen + 2 * minGreen) / GREEN_RANGE + mid;

 // Compute indices

 uint indices = 0;

 for (int i = 0; i < 16; i++)

 {

 float y = block[i].y;

 uint index = (y <= yb1);

 index += (y <= yb2);

 index += (y <= yb3);

 indices |= index << (i * 2);

 }

 uint i0 = (indices & 0x55555555);

 uint i1 = (indices & 0xAAAAAAAA) >> 1;

 indices = ((i0 ^ i1) << 1) | i1;

 // Output indices

 return indices;

}

#endif

uint EmitAlphaEndPoints(float mincol, float maxcol)

{

 uint c0 = round(mincol * 255);

 uint c1 = round(maxcol * 255);

 return (c0 << 8) | c1;

}

uint2 EmitAlphaIndices(float2 block[16], float minAlpha, float maxAlpha)

{

 const int ALPHA_RANGE = 7;

 float bias = maxAlpha + (maxAlpha - minAlpha) / (2.0 * ALPHA_RANGE);

 float scale = 1.0f / (maxAlpha - minAlpha);

 uint2 indices = 0;

 for (int i = 0; i < 6; i++)

 {

 uint index = saturate((bias - block[i].x) * scale) * ALPHA_RANGE;

 indices.x |= index << (3 * i);

 }

 for (int i = 6; i < 16; i++)

 {

 uint index = saturate((bias - block[i].x) * scale) * ALPHA_RANGE;

 indices.y |= index << (3 * i - 18);

 }

 uint2 i0 = (indices >> 0) & 0x09249249;

 uint2 i1 = (indices >> 1) & 0x09249249;

 uint2 i2 = (indices >> 2) & 0x09249249;

 i2 ^= i0 & i1;

 i1 ^= i0;

 i0 ^= (i1 | i2);

 indices.x = (i2.x << 2) | (i1.x << 1) | i0.x;

 indices.y = (((i2.y << 2) | (i1.y << 1) | i0.y) << 2) | (indices.x >>

16);

 indices.x <<= 16;

 return indices;

}

uint2 EmitLuminanceIndices(float2 block[16], float minAlpha, float maxAlpha)

{

 const int ALPHA_RANGE = 7;

 float bias = maxAlpha + (maxAlpha - minAlpha) / (2.0 * ALPHA_RANGE);

 float scale = 1.0f / (maxAlpha - minAlpha);

 uint2 indices = 0;

 for (int i = 0; i < 6; i++)

 {

 uint index = saturate((bias - block[i].y) * scale) * ALPHA_RANGE;

 indices.x |= index << (3 * i);

 }

 for (int i = 6; i < 16; i++)

 {

 uint index = saturate((bias - block[i].y) * scale) * ALPHA_RANGE;

 indices.y |= index << (3 * i - 18);

 }

 uint2 i0 = (indices >> 0) & 0x09249249;

 uint2 i1 = (indices >> 1) & 0x09249249;

 uint2 i2 = (indices >> 2) & 0x09249249;

 i2 ^= i0 & i1;

 i1 ^= i0;

 i0 ^= (i1 | i2);

 indices.x = (i2.x << 2) | (i1.x << 1) | i0.x;

 indices.y = (((i2.y << 2) | (i1.y << 1) | i0.y) << 2) | (indices.x >>

16);

 indices.x <<= 16;

 return indices;

}

// compress a 4x4 block to DXT5nm format

// integer version, renders to 4 x int32 buffer

uint4 compress_NormalDXT5_fp(float2 texcoord : TEXCOORD0,

 uniform sampler2D image,

 uniform float2 imageSize = { 512.0, 512.0 }

) : COLOR

{

 // read block

 float2 block[16];

 ExtractColorBlockXY(block, image, texcoord, imageSize);

 // find min and max colors

 float2 mincol, maxcol;

 FindMinMaxColorsBox(block, mincol, maxcol);

 InsetNormalsBBoxDXT5(mincol, maxcol);

 uint4 output;

 // Output X in DXT5 green channel.

 output.z = EmitGreenEndPoints(mincol.y, maxcol.y);

 output.w = EmitGreenIndices(block, mincol.y, maxcol.y);

 // Output Y in DXT5 alpha block.

 output.x = EmitAlphaEndPoints(mincol.x, maxcol.x);

 uint2 indices = EmitAlphaIndices(block, mincol.x, maxcol.x);

 output.x |= indices.x;

 output.y = indices.y;

 return output;

}

// compress a 4x4 block to LATC format

// integer version, renders to 4 x int32 buffer

uint4 compress_NormalLATC_fp(float2 texcoord : TEXCOORD0,

 uniform sampler2D image,

 uniform float2 imageSize = { 512.0, 512.0 }

) : COLOR

{

 //imageSize = tex2Dsize(image, texcoord);

 // read block

 float2 block[16];

 ExtractColorBlockXY(block, image, texcoord, imageSize);

 // find min and max colors

 float2 mincol, maxcol;

 FindMinMaxColorsBox(block, mincol, maxcol);

 InsetNormalsBBoxLATC(mincol, maxcol);

 uint4 output;

 // Output Ny as an alpha block.

 output.x = EmitAlphaEndPoints(mincol.y, maxcol.y);

 uint2 indices = EmitLuminanceIndices(block, mincol.y, maxcol.y);

 output.x |= indices.x;

 output.y = indices.y;

 // Output Nx as an alpha block.

 output.z = EmitAlphaEndPoints(mincol.x, maxcol.x);

 indices = EmitAlphaIndices(block, mincol.x, maxcol.x);

 output.z |= indices.x;

 output.w = indices.y;

 return output;

}

uniform float3 lightDirection;

uniform bool reconstructNormal = true;

uniform bool displayNormal = true;

uniform bool displayError = false;

uniform float errorScale = 4.0f;

uniform sampler2D image : TEXUNIT0;

uniform sampler2D originalImage : TEXUNIT1;

float3 shadeNormal(float3 N)

{

 float3 L = normalize(lightDirection);

 float3 R = reflect(float3(0, 0, -1), N);

 float diffuse = saturate(dot (N, L));

 float specular = pow(saturate(dot(R, L)), 12);

 return 0.7 * diffuse + 0.5 * specular;

}

// Draw reconstructed normals.

float4 display_fp(float2 texcoord : TEXCOORD0) : COLOR

{

 float3 N;

 if (reconstructNormal)

 {

 N.xy = 2 * tex2D(image, texcoord).wy - 1;

 N.z = sqrt(saturate(1 - N.x * N.x - N.y * N.y));

 }

 else

 {

 N = normalize(2 * tex2D(image, texcoord).xyz - 1);

 }

 if (displayError)

 {

 float3 originalNormal = normalize(2 * tex2D(originalImage,

texcoord).xyz - 1);

 if (displayNormal)

 {

 float3 diff = (N - originalNormal) * errorScale;

 return float4(diff, 1);

 }

 else

 {

 float3 diff = abs(shadeNormal(N) - shadeNormal(originalNormal)) *

errorScale;

 return float4(diff, 1);

 }

 }

 else

 {

 if (displayNormal)

 {

 return float4(0.5 * N + 0.5, 1);

 }

 else

 {

 return float4(shadeNormal(N), 1);

 }

 }

}

// Draw geometry normals.

uniform float4x4 mvp : ModelViewProjection;

uniform float3x3 mvit : ModelViewInverseTranspose;

void display_object_vp(float4 pos : POSITION,

 float3 normal : NORMAL,

 out float4 hpos : POSITION,

 out float3 o_normal : TEXCOORD0)

{

 hpos = mul(pos, mvp);

 o_normal = mul(normal, mvit);

}

float4 display_object_fp(float3 N : TEXCOORD0) : COLOR

{

 N = normalize(N);

 return float4(0.5 * N + 0.5, 1);

}

